(2008?宁夏)如图,在边长为4的正方形ABCD中,点P在AB上从A向B运动,连接DP交AC于点Q.(1)试证明:无

(2008?宁夏)如图,在边长为4的正方形ABCD中,点P在AB上从A向B运动,连接DP交AC于点Q.(1)试证明:无论点P运动到AB上何处时,都有△ADQ≌△ABQ;(... (2008?宁夏)如图,在边长为4的正方形ABCD中,点P在AB上从A向B运动,连接DP交AC于点Q.(1)试证明:无论点P运动到AB上何处时,都有△ADQ≌△ABQ;(2)当点P在AB上运动到什么位置时,△ADQ的面积是正方形ABCD面积的16;(3)若点P从点A运动到点B,再继续在BC上运动到点C,在整个运动过程中,当点P运动到什么位置时,△ADQ恰为等腰三角形. 展开
 我来答
DY95w戍
推荐于2016-05-24 · 超过61用户采纳过TA的回答
知道答主
回答量:118
采纳率:0%
帮助的人:160万
展开全部
解答:(1)证明:在正方形ABCD中,
无论点P运动到AB上何处时,都有
AD=AB,∠DAQ=∠BAQ,AQ=AQ,
∴△ADQ≌△ABQ;

(2)解法一:△ADQ的面积恰好是正方形ABCD面积的
1
6
时,
过点Q作QE⊥AD于E,QF⊥AB于F,则QE=QF,
∵在边长为4的正方形ABCD中,
∴S正方形ABCD=16,
1
2
AD×QE=
1
6
S正方形ABCD=
1
6
×16=
8
3

∴QE=
4
3

∵EQ∥AP,
∴△DEQ∽△DAP,
QE
AP
DE
DA
,即
4
3
AP
=
4?
4
3
4

解得AP=2,
∴AP=2时,△ADQ的面积是正方形ABCD面积的
1
6

解法二:以A为原点建立如图所示的直角坐标系,过点Q作QE⊥y轴于点E,QF⊥x轴于点F.
1
2
AD×QE=
1
6
S正方形ABCD=
1
6
×16=
8
3

∴QE=
4
3

∵点Q在正方形对角线AC上,
∴Q点的坐标为(
4
3
4
3
),
∴过点D(0,4),Q(
4
3
4
3
)两点的函数关系式为:y=-2x+4,
当y=0时,x=2,
∴P点的坐标为(2,0),
∴AP=2时,即当点P运动到AB中点位置时,△ADQ的面积是正方形ABCD面积的
1
6


(3)解:若△ADQ是等腰三角形,则有QD=QA或DA=DQ或AQ=AD,
①当AD=DQ时,则∠DQA=∠DAQ=45°
∴∠ADQ=90°,P为C点,
②当AQ=DQ时,则∠DAQ=∠ADQ=45°,
∴∠AQD=90°,P为B,
③AD=AQ(P在BC上),
∴CQ=AC-AQ=
2
BC-BC=(
2
-1)BC
∵AD∥BC
CP
AD
=
CQ
AQ
,即可得
CP
CQ
=
AD
AQ
=1,
∴CP=CQ=(
2
-1)BC=4(
2
-1)
综上,P在B点,C点,或在CP=4(
2
-1)处,△ADQ是等腰三角形.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式