
观察下列算式:13=1,23=3+5,33=7+9+11,43=13+15+17+19,…若某数n3按上述规律展开后,发现等式右边含
观察下列算式:13=1,23=3+5,33=7+9+11,43=13+15+17+19,…若某数n3按上述规律展开后,发现等式右边含有“2013”这个数,则n=()A.4...
观察下列算式:13=1,23=3+5,33=7+9+11,43=13+15+17+19,…若某数n3按上述规律展开后,发现等式右边含有“2013”这个数,则n=( )A.41B.43C.45D.47
展开
1个回答
展开全部
由题意可得第n行的左边是n3,右边是n个连续奇数的和,
设第n行的第一个数为an,则有a2-a1=3-1=2,
a3-a2=7-3=4,…an-an-1=2(n-1),
以上(n-1)个式子相加可得an-a1=
,
故an=n2-n+1,可得a45=1981,a46=2071,
故可知2013在第45行,
故选:C
设第n行的第一个数为an,则有a2-a1=3-1=2,
a3-a2=7-3=4,…an-an-1=2(n-1),
以上(n-1)个式子相加可得an-a1=
(n?1)[2+2(n?1)] |
2 |
故an=n2-n+1,可得a45=1981,a46=2071,
故可知2013在第45行,
故选:C
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询