如图,已知二次函数y=x2+bx+c的图象与x轴交于A,B两点,与y轴交于点P,顶点为C(1,-2).(1)求此函数
如图,已知二次函数y=x2+bx+c的图象与x轴交于A,B两点,与y轴交于点P,顶点为C(1,-2).(1)求此函数的关系式;(2)作点C关于x轴的对称点D,顺次连接A,...
如图,已知二次函数y=x2+bx+c的图象与x轴交于A,B两点,与y轴交于点P,顶点为C(1,-2).(1)求此函数的关系式;(2)作点C关于x轴的对称点D,顺次连接A,C,B,D.若在抛物线上存在点E,使直线PE将四边形ABCD分成面积相等的两个四边形,求点E的坐标;(3)在(2)的条件下,抛物线上是否存在一点F,使得△PEF是以P为直角顶点的直角三角形?若存在,求出点F的坐标及△PEF的面积;若不存在,请说明理由.
展开
1个回答
展开全部
(1)∵y=x2+bx+c的顶点为(1,-2).
∴y=(x-1)2-2,y=x2-2x-1;
(2)设直线PE对应的函数关系式为y=kx+b,根据A,B关于对称轴对称,
可以得出AC=CB,AD=BD,点C关于x轴的对称点D,
故AC=BC=AD=BD,
则四边形ACBD是菱形,
故直线PE必过菱形ACBD的对称中心M.
由P(0,-1),M(1,0),
得
从而得y=x-1,
设E(x,x-1)代入y=x2-2x-1得x-1=x2-2x-1,
解得x1=0,x2=3,
根据题意得点E(3,2);
(3)假设存在这样的点F,可设F(x,x2-2x-1),
过点F做FG⊥y轴,垂足为G点.
在Rt△POM和Rt△FGP中,
∵∠OMP+∠OPM=90°,∠FPG+∠OPM=90°,
∠OMP=∠FPG,
又∠MOP=∠PGF,
∴△POM∽△FGP
∴
=
∵OM=1,OP=1,
∴GP=GF,即-1-(x2-2x-1)=x,
解得x1=0,x2=1,
根据题意得F(1,-2)
以上各步均可逆,故点F(1,-2)即为所求,
S△PEF=S△MFP+S△MFE=
×2×1+
×2×2=3.
∴y=(x-1)2-2,y=x2-2x-1;
(2)设直线PE对应的函数关系式为y=kx+b,根据A,B关于对称轴对称,
可以得出AC=CB,AD=BD,点C关于x轴的对称点D,
故AC=BC=AD=BD,
则四边形ACBD是菱形,
故直线PE必过菱形ACBD的对称中心M.
由P(0,-1),M(1,0),
得
|
从而得y=x-1,
设E(x,x-1)代入y=x2-2x-1得x-1=x2-2x-1,
解得x1=0,x2=3,
根据题意得点E(3,2);
(3)假设存在这样的点F,可设F(x,x2-2x-1),
过点F做FG⊥y轴,垂足为G点.
在Rt△POM和Rt△FGP中,
∵∠OMP+∠OPM=90°,∠FPG+∠OPM=90°,
∠OMP=∠FPG,
又∠MOP=∠PGF,
∴△POM∽△FGP
∴
OM |
OP |
GP |
GF |
∵OM=1,OP=1,
∴GP=GF,即-1-(x2-2x-1)=x,
解得x1=0,x2=1,
根据题意得F(1,-2)
以上各步均可逆,故点F(1,-2)即为所求,
S△PEF=S△MFP+S△MFE=
1 |
2 |
1 |
2 |
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询