如图,已知二次函数y=ax2+4x+c的图象经过点A(1,-1)和点B(-3,-9).(1)求该二次函数的表达式;(2
如图,已知二次函数y=ax2+4x+c的图象经过点A(1,-1)和点B(-3,-9).(1)求该二次函数的表达式;(2)写出该抛物线的对称轴及顶点坐标;(3)点P(m,-...
如图,已知二次函数y=ax2+4x+c的图象经过点A(1,-1)和点B(-3,-9).(1)求该二次函数的表达式;(2)写出该抛物线的对称轴及顶点坐标;(3)点P(m,-m)与点Q均在该函数图象上(其中m>0),且这两点关于抛物线的对称轴对称,求m的值及点Q到x轴的距离.
展开
1个回答
展开全部
(1)将x=1,y=-1;x=-3,y=-9分别代入y=ax2+4x+c得:
解得
∴二次函数的表达式为y=x2+4x-6;
(2)y=x2+4x-6;
=x2+4x+4-6-4,
=(x+2)2-10,
对称轴为x=-2;顶点坐标为(-2,-10);
(3)将(m,-m)代入y=x2+4x-6,得-m=m2+4m-6,
解得m1=-6,m2=1.
∵m>0,
∴m1=-6不合题意,舍去.
∴m=1.
∵点P与点Q关于对称轴x=-2对称,
∴点Q到x轴的距离为1.
|
解得
|
∴二次函数的表达式为y=x2+4x-6;
(2)y=x2+4x-6;
=x2+4x+4-6-4,
=(x+2)2-10,
对称轴为x=-2;顶点坐标为(-2,-10);
(3)将(m,-m)代入y=x2+4x-6,得-m=m2+4m-6,
解得m1=-6,m2=1.
∵m>0,
∴m1=-6不合题意,舍去.
∴m=1.
∵点P与点Q关于对称轴x=-2对称,
∴点Q到x轴的距离为1.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询