如图,已知抛物线y=ax 2 +bx+3与x轴交于A、B两点,过点A的直线l与抛物线交于点C,其中A点的坐标是(1,0

如图,已知抛物线y=ax2+bx+3与x轴交于A、B两点,过点A的直线l与抛物线交于点C,其中A点的坐标是(1,0),C点坐标是(4,3).(1)求抛物线的解析式;(2)... 如图,已知抛物线y=ax 2 +bx+3与x轴交于A、B两点,过点A的直线l与抛物线交于点C,其中A点的坐标是(1,0),C点坐标是(4,3). (1)求抛物线的解析式;(2)在(1)中抛物线的对称轴上是否存在点D,使△BCD的周长最小?若存在,求出点D的坐标,若不存在,请说明理由;(3)若点E是(1)中抛物线上的一个动点,且位于直线AC的下方,试求△ACE的最大面积及E点的坐标. 展开
 我来答
闹闹PRz
推荐于2016-11-26 · 超过61用户采纳过TA的回答
知道答主
回答量:112
采纳率:0%
帮助的人:111万
展开全部
解:(1)∵抛物线y=ax 2 +bx+3经过点A(1,0),点C(4,3),
,解得
∴抛物线的解析式为y=x 2 ﹣4x+3。
(2)存在。
∵点A、B关于对称轴对称,∴点D为AC与对称轴的交点时△BCD的周长最小。
∵y=x 2 ﹣4x+3=(x﹣2) 2 ﹣1,∴抛物线的对称轴为直线x=2。
设直线AC的解析式为y=kx+b(k≠0),
,解得:
∴直线AC的解析式为y=x﹣1。
当x=2时,y=2﹣1=1。
∴抛物线对称轴上存在点D(2,1),使△BCD的周长最小。
(3)如图,设过点E与直线AC平行线的直线为y=x+m,

联立 ,消掉y得,x 2 ﹣5x+3﹣m=0。
由△=(﹣5) 2 ﹣4×1×(3﹣m)=0得m=
∴m= 时,点E到AC的距离最大,△ACE的面积最大。
此时x= ,y=
∴点E的坐标为( )。
设过点E的直线与x轴交点为F,则F( ,0)。
∴AF=
∵直线AC的解析式为y=x﹣1,∴∠CAB=45°。
∴点F到AC的距离为
又∵
∴△ACE的最大面积 ,此时E点坐标为( )。


试题分析:(1)利用待定系数法求二次函数解析式解答即可。
(2)利用待定系数法求出直线AC的解析式,然后根据轴对称确定最短路线问题,直线AC与对称轴的交点即为所求点D。
(3)根据直线AC的解析式,设出过点E与AC平行的直线,然后与抛物线解析式联立消掉y得到关于x的一元二次方程,利用根的判别式△=0时,△ACE的面积最大,然后求出此时与AC平行的直线,然后求出点E的坐标,并求出该直线与x轴的交点F的坐标,再求出AF,再根据直线l与x轴的夹角为45°求出两直线间的距离,再求出AC间的距离,然后利用三角形的面积公式列式计算即可得解。
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式