2个回答
推荐于2017-09-25
展开全部
解:可以用“大-小”实现。过程是,∫∫Dydxdy=∫(-2,0)dx∫(0,2)ydy-∫(-√(2y-y^2),0)dx∫(0,2)ydy。
又,∫(-2,0)dx∫(0,2)ydy=∫(-2,0)[(1/2)y^2丨(y=0,2)]dx=2∫(-2,0)dx=4;
对∫(-√(2y-y^2),0)dx∫(0,2)ydy,设设x=ρcosθ,y=ρsinθ,则积分区域D={(ρ,θ)丨0≤ρ≤2sinθ,π/2≤θ≤π}。
∴∫(-√(2y-y^2),0)dx∫(0,2)ydy=∫(π/2,π)dθ∫(0,2sinθ)(ρ^2)sinθdρ=(8/3)∫(π/2),π)(sinθ)^4dθ=(1/3)∫(π/2),π)(3-4cos2θ+cos4θ)dθ=π/2。
∴∫∫Dydxdy=4-π/2。供参考。
又,∫(-2,0)dx∫(0,2)ydy=∫(-2,0)[(1/2)y^2丨(y=0,2)]dx=2∫(-2,0)dx=4;
对∫(-√(2y-y^2),0)dx∫(0,2)ydy,设设x=ρcosθ,y=ρsinθ,则积分区域D={(ρ,θ)丨0≤ρ≤2sinθ,π/2≤θ≤π}。
∴∫(-√(2y-y^2),0)dx∫(0,2)ydy=∫(π/2,π)dθ∫(0,2sinθ)(ρ^2)sinθdρ=(8/3)∫(π/2),π)(sinθ)^4dθ=(1/3)∫(π/2),π)(3-4cos2θ+cos4θ)dθ=π/2。
∴∫∫Dydxdy=4-π/2。供参考。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询