等腰Rt△ABC中,∠BAC=90°,点A、点B分别是x轴、y轴两个动点,直角边AC交x轴于点D,斜边BC交y轴于点E。

等腰Rt△ABC中,∠BAC=90°,点A、点B分别是x轴、y轴两个动点,直角边AC交x轴于点D,斜边BC交y轴于点E。(1)如图(1),若A(0,1),B(2,0),求... 等腰Rt△ABC中,∠BAC=90°,点A、点B分别是x轴、y轴两个动点,直角边AC交x轴于点D,斜边BC交y轴于点E。(1)如图(1),若A(0,1),B(2,0),求C点的坐标;(2)如图(2), 当等腰Rt△ABC运动到使点D恰为AC中点时,连接DE,求证:∠ADB=∠CDE;(3)如图(3),在等腰Rt△ABC不断运动的过程中,若满足BD始终是∠ABC的平分线,试探究:线段OA、OD、BD三者之间是否存在某一固定的数量关系,并说明理由。 展开
 我来答
变形啥0031
推荐于2017-12-15 · TA获得超过127个赞
知道答主
回答量:167
采纳率:50%
帮助的人:54.2万
展开全部
(1)C(-1,-1);(2)见解析;(3)BD="2(OA" +OD)


试题分析:(1)过点C作CF⊥y轴于点F,则△ACF≌△ABO(AAS),即得CF=OA=1,AF=OB=2,
从而求得结果;
(2)过点C作CG⊥AC交y轴于点G,则△ACG≌△ABD(ASA),即得CG=AD=CD,∠ADB=∠G, 由∠DCE=∠GCE=45°,可证△DCE≌△GCE(SAS)得∠CDE=∠G,从而得到结论;
(3)在OB上截取OH=OD,连接AH,由对称性得AD="AH," ∠ADH=∠AHD,可得∠AHD=∠ADH=∠BAO=∠BEO,即得∠AEC=∠BHA,从而证得△ACE≌△BAH(AAS),即可得到   AE=BH=2OA,从而得到结果.
(1)如图,过点C作CF⊥y轴于点F

则△ACF≌△ABO(AAS),
∴CF=OA=1,AF=OB=2
∴OF=1
∴C(-1,-1);
(2)如图,过点C作CG⊥AC交y轴于点G

则△ACG≌△ABD(ASA)
∴CG=AD=CD,∠ADB="∠G"
∵∠DCE=∠GCE=45°
∴△DCE≌△GCE(SAS)
∴∠CDE=∠G
∴∠ADB=∠CDE;  
(3) 如图,在OB上截取OH=OD,连接AH

由对称性得AD="AH," ∠ADH=∠AHD
∴∠AHD=∠ADH=∠BAO=∠BEO
∴∠AEC=∠BHA    
又∵AB=AC  ∠CAE=∠ABH
∴△ACE≌△BAH(AAS)   
∴AE=BH=2OA        
∵DH=2OD
∴BD="2(OA" +OD)
点评:解答本题的关键是正确作出辅助线,同时熟练掌握全等三角形的判定方法,灵活选择恰当的三角形进行分析.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式