已知x=3是函数f(x)=aln(1+x)+x2-10x的一个极值点.(Ⅰ)求a;(Ⅱ)求函数f(x)的单调区间;(Ⅲ)

已知x=3是函数f(x)=aln(1+x)+x2-10x的一个极值点.(Ⅰ)求a;(Ⅱ)求函数f(x)的单调区间;(Ⅲ)若直线y=b与函数y=f(x)的图象有3个交点,求... 已知x=3是函数f(x)=aln(1+x)+x2-10x的一个极值点.(Ⅰ)求a;(Ⅱ)求函数f(x)的单调区间;(Ⅲ)若直线y=b与函数y=f(x)的图象有3个交点,求b的取值范围. 展开
 我来答
阿韶ytPB
2014-10-17 · TA获得超过107个赞
知道答主
回答量:143
采纳率:100%
帮助的人:70.5万
展开全部
(Ⅰ)因为f(x)=
a
1+x
+2x?10

所以f(3)=
a
4
+6?10=0

因此a=16
(Ⅱ)由(Ⅰ)知,f(x)=16ln(1+x)+x2-10x,x∈(-1,+∞)f(x)=
2(x2?4x+3)
1+x

当x∈(-1,1)∪(3,+∞)时,f′(x)>0
当x∈(1,3)时,f′(x)<0
所以f(x)的单调增区间是(-1,1),(3,+∞)f(x)的单调减区间是(1,3)
(Ⅲ)由(Ⅱ)知,f(x)在(-1,1)内单调增加,
在(1,3)内单调减少,在(3,+∞)上单调增加,且当x=1或x=3时,f′(x)=0
所以f(x)的极大值为f(1)=16ln2-9,极小值为f(3)=32ln2-21
因此f(16)>162-10×16>16ln2-9=f(1)f(e-2-1)<-32+11=-21<f(3)
所以在f(x)的三个单调区间(-1,1),(1,3),(3,+∞)直线y=b有y=f(x)的图象各有一个交点,当且仅当f(3)<b<f(1)
因此,b的取值范围为(32ln2-21,16ln2-9).
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式