如图所示,在直三棱柱ABC-A1B1C1中,AB=BB1=BC,AC1⊥平面A1BD,D为AC的中点.(1)求证:B1C∥平面A1BD

如图所示,在直三棱柱ABC-A1B1C1中,AB=BB1=BC,AC1⊥平面A1BD,D为AC的中点.(1)求证:B1C∥平面A1BD;(2)求证:B1C1⊥平面ABB1... 如图所示,在直三棱柱ABC-A1B1C1中,AB=BB1=BC,AC1⊥平面A1BD,D为AC的中点.(1)求证:B1C∥平面A1BD;(2)求证:B1C1⊥平面ABB1A1;(3)在CC1上是否存在一点E,使得∠BA1E=45°,若存在,试确定E的位置,并判断平面A1BD与平面BDE是否垂直?若不存在,请说明理由. 展开
 我来答
樱花MI13
2014-09-21 · 超过71用户采纳过TA的回答
知道答主
回答量:154
采纳率:60%
帮助的人:63.8万
展开全部
证明:(1)连接AB1与A1B相交于点M,连接MD,则点M为AB1的中点.
又D为AC的中点,由三角形的中位线定理可得:MD∥B1C.
又∵B1C?平面A1BD,MD?平面A1BD,
∴B1C∥平面A1BD;
(2)∵AB=B1B,及直三棱柱ABC-A1B1C1中,
∴四边形ABB1A1为正方形,BB1⊥B1C1
∴A1B⊥AB1
又AC1⊥平面A1BD,∴AC1⊥A1B,
又AB1∩AC1=A.
∴A1B⊥平面AB1C1,∴A1B⊥B1C1
∵A1B∩BB1=B,∴B1C1⊥平面ABB1A1
(3)设AB=a,CE=x,
∵B1C1⊥A1B1,在Rt△A1B1C1中,有A1C1=
2
a
,同理A1B1=a,∴C1E=a-x.
A1E=
2a2+(a-x)2
=
x2-2ax+3a2
BE=
a2+x2

∴在△A1BE中,由余弦定理得BE2=A1B2+A1E2-2A1B?A1Ecos45°
即a2+x2=2a2+x2+3a2-2ax-2
2
a
3a2+x2-2ax
×
2
2

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式