如图,AB是⊙O的直径,P为AB延长线上任意一点,C为半圆ACB的中点,PD切⊙O于点D,连接CD交AB于点E. 求证

如图,AB是⊙O的直径,P为AB延长线上任意一点,C为半圆ACB的中点,PD切⊙O于点D,连接CD交AB于点E.求证:(1)PD=PE;(2)PE2=PA·PB.... 如图,AB是⊙O的直径,P为AB延长线上任意一点,C为半圆ACB的中点,PD切⊙O于点D,连接CD交AB于点E. 求证:(1)PD=PE; (2)PE 2 =PA·PB. 展开
 我来答
灭世小铭6折
推荐于2016-09-21 · TA获得超过115个赞
知道答主
回答量:101
采纳率:0%
帮助的人:138万
展开全部
证明:(1)连接OC、OD,
∵C是半圆ACB的中点
∴∠COA=∠COB
∵∠COA+∠COB=180°
∴∠COA=∠COB=90°
∴OD⊥PD,OC⊥AB.
∴∠PDE=90°﹣∠ODE,∠PED=∠CEO=90°﹣∠C,
又∵OC=OD,
∴∠C=∠ODE,
∴∠PDE=∠PED.
∴PE=PD.
(2)连接AD、BD,
∴∠ADB=90°.
∵∠BDP=90°﹣∠ODB,∠A=90°﹣∠OBD,
又∵∠OBD=∠ODB,
∴∠BDP=∠A;
△PDB∽△PAD.

∴PD 2 =PA·PB.
∴PE 2 =PA·PB.

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式