已知抛物线y=ax2+bx+3(a≠0)经过A(3,0),B(4,1)两点,且与y轴交于点C.(1)求抛物线y=ax2+bx+3
已知抛物线y=ax2+bx+3(a≠0)经过A(3,0),B(4,1)两点,且与y轴交于点C.(1)求抛物线y=ax2+bx+3(a≠0)的函数关系式及点C的坐标;(2)...
已知抛物线y=ax2+bx+3(a≠0)经过A(3,0),B(4,1)两点,且与y轴交于点C.(1)求抛物线y=ax2+bx+3(a≠0)的函数关系式及点C的坐标;(2)如图(1),连接AB,在题(1)中的抛物线上是否存在点P,使△PAB是以AB为直角边的直角三角形?若存在,求出点P的坐标;若不存在,请说明理由;(3)如图(2),连接AC,E为线段AC上任意一点(不与A、C重合)经过A、E、O三点的圆交直线AB于点F,当△OEF的面积取得最小值时,求点E的坐标.
展开
1个回答
展开全部
(1)∵抛物线y=ax2+bx+3(a≠0)经过A(3,0),B(4,1)两点,
∴
,
解得:
,
∴y=
x2-
x+3;
∴点C的坐标为:(0,3);
(2)假设存在,分两种情况:
①当△PAB是以A为直角顶点的直角三角形,且∠PAB=90°,
如图1,过点B作BM⊥x轴于点M,设D为y轴上的点,
∵A(3,0),B(4,1),
∴AM=BM=1,
∴∠BAM=45°,
∴∠DAO=45°,
∴AO=DO,
∵A点坐标为(3,0),
∴D点的坐标为:(0,3),
∴直线AD解析式为:y=kx+b,将A,D分别代入得:
∴0=3k+b,b=3,
∴k=-1,
∴y=-x+3,
∴y=
x2-
x+3=-x+3,
∴x2-3x=0,
解得:x=0或3,
∴y=3,y=0(不合题意舍去),
∴P点坐标为(0,3),
∴点P、C、D重合,
②当△PAB是以B为直角顶点的直角三角形,且∠PBA=90°,
如图2,过点B作BF⊥y轴于点F,
由(1)得,FB=4,∠FBA=45°,
∴∠DBF=45°,
∴DF=4,
∴D点坐标为:(0,5),B点坐标为:(4,1),
∴直线BD解析式为:y=kx+b,将B,D分别代入得:
∴1=4k+b,b=5,
∴k=-1,
∴y=-x+5,
∴y=
x2-
x+3=-x+5,
∴x2-3x-4=0,
解得:x1=-1,x2=4(舍),
∴y=6,
∴P点坐标为(-1,6),
∴点P的坐标为:(-1,6),(0,3);
(3)如图3:作EM⊥AO于M,
∵直线AC的解析式为:y=-x+3,
∴tan∠OAC=1,
∴∠OAC=45°,
∴∠OAC=∠OAF=45°,
∴AC⊥AF,
∵S△FEO=
OE×OF,
OE最小时S△FEO最小,
∵OE⊥AC时OE最小,
∵AC⊥AF
∴OE∥AF
∴∠EOM=45°,
∴MO=EM,
∵E在直线CA上,
∴E点坐标为(x,-x+3),
∴
|
解得:
|
∴y=
1 |
2 |
5 |
2 |
∴点C的坐标为:(0,3);
(2)假设存在,分两种情况:
①当△PAB是以A为直角顶点的直角三角形,且∠PAB=90°,
如图1,过点B作BM⊥x轴于点M,设D为y轴上的点,
∵A(3,0),B(4,1),
∴AM=BM=1,
∴∠BAM=45°,
∴∠DAO=45°,
∴AO=DO,
∵A点坐标为(3,0),
∴D点的坐标为:(0,3),
∴直线AD解析式为:y=kx+b,将A,D分别代入得:
∴0=3k+b,b=3,
∴k=-1,
∴y=-x+3,
∴y=
1 |
2 |
5 |
2 |
∴x2-3x=0,
解得:x=0或3,
∴y=3,y=0(不合题意舍去),
∴P点坐标为(0,3),
∴点P、C、D重合,
②当△PAB是以B为直角顶点的直角三角形,且∠PBA=90°,
如图2,过点B作BF⊥y轴于点F,
由(1)得,FB=4,∠FBA=45°,
∴∠DBF=45°,
∴DF=4,
∴D点坐标为:(0,5),B点坐标为:(4,1),
∴直线BD解析式为:y=kx+b,将B,D分别代入得:
∴1=4k+b,b=5,
∴k=-1,
∴y=-x+5,
∴y=
1 |
2 |
5 |
2 |
∴x2-3x-4=0,
解得:x1=-1,x2=4(舍),
∴y=6,
∴P点坐标为(-1,6),
∴点P的坐标为:(-1,6),(0,3);
(3)如图3:作EM⊥AO于M,
∵直线AC的解析式为:y=-x+3,
∴tan∠OAC=1,
∴∠OAC=45°,
∴∠OAC=∠OAF=45°,
∴AC⊥AF,
∵S△FEO=
1 |
2 |
OE最小时S△FEO最小,
∵OE⊥AC时OE最小,
∵AC⊥AF
∴OE∥AF
∴∠EOM=45°,
∴MO=EM,
∵E在直线CA上,
∴E点坐标为(x,-x+3),
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询