已知m, n 均为正整数,那么3^m+3^n+1能否是完全平方数?能的话请举例,不能请说明理由

 我来答
fnxnmn
推荐于2016-10-13 · TA获得超过5.9万个赞
知道大有可为答主
回答量:1.1万
采纳率:90%
帮助的人:6655万
展开全部
m,n是正整数,证明:3^m+3^n+1不可能是完全平方数
证:
完全平方数按奇偶分为两类:
1#: (2k+1)^2=4k(k+1)+1==1 mod 8.
2#: (2k)^2=4kk
易见f=3^m+3^n+1不可能形如2#.
假设f形如1#, 应该除以8余1.
或者说3^m+3^n应该是8的倍数,不妨设m≤n,
由于3^m+3^n=3^m[1+3^(n-m)],那么1+3^(n-m)应该是8的倍数。
但是这是不可能的,
因为假如n-m是偶数,那么1+3^(n-m)除以8余2;
假如n-m是奇数,那么1+3^(n-m)除以8余4.都不是8的倍数。
所以要证的命题成立。
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式