如图所示,在平行四边形ABCD中,过点B作BE⊥CD,垂足为E,连接AE,F为AE上的一点,且∠BFE =∠C。

如图所示,在平行四边形ABCD中,过点B作BE⊥CD,垂足为E,连接AE,F为AE上的一点,且∠BFE=∠C。(1)求证:△ABF∽△EAD;(2)若AB=4,∠BAE=... 如图所示,在平行四边形ABCD中,过点B作BE⊥CD,垂足为E,连接AE,F为AE上的一点,且∠BFE =∠C。 (1)求证:△ABF∽△EAD;(2)若AB=4,∠BAE=30°,求AE的长;(3)在(1)、(2)的条件下,若AD=3,求BF的长(计算结果可含根号)。 展开
 我来答
焱晨宝贝cB
推荐于2016-12-01 · 超过67用户采纳过TA的回答
知道答主
回答量:119
采纳率:0%
帮助的人:156万
展开全部
解:(1)∵AD∥BC,
∴∠C+∠ADE=180°
∵∠BFE=∠C,
∴∠AFB=∠EDA
∵AB∥DC,
∴∠BAE=∠AED
∴△ABF∽△EAD。
(2)∵AB∥CD,BE⊥CD,
∴∠ABE=90°,
∵AB=4,∠BAE=30°
,则
由勾股定理得
解得
(3)∵△ABF∽△EAD


推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式