如图:直角梯形ABCD中,AD∥BC,BC=CD,O是BD的中点,E是CD延长线上一点,作OF⊥OE交DA的延长线于F,OE交
如图:直角梯形ABCD中,AD∥BC,BC=CD,O是BD的中点,E是CD延长线上一点,作OF⊥OE交DA的延长线于F,OE交AD于H,OF交AB于G,交CD于K,以下结...
如图:直角梯形ABCD中,AD∥BC,BC=CD,O是BD的中点,E是CD延长线上一点,作OF⊥OE交DA的延长线于F,OE交AD于H,OF交AB于G,交CD于K,以下结论:①OE=OF;②OH=FG;③DF-DE=22BD;④四边形OHDK的面积是△BCD面积的一半,其中结论正确的是( )A.②③④B.①②③C.①②④D.①③④
展开
1个回答
展开全部
解:∵O为BD中点,BC=CD,BC⊥CD,
∴OC=OD=OB,∠OCK=∠ODH=45°,OC⊥BD,
∵EO⊥FO,
∴∠DOH=∠COK,
∴△DOH≌△COK,
∴OH=OK,∠EKO=∠FHO,
∴△FOH≌△EOK,
∴OE=OF,
∵△DOH≌△COK,
∴∠EOD=∠KOC,
∴∠FOD=∠EOC,
∵∠OCK=∠ODH=45°,OC=OD,
∴△FOD≌△EOC,
∴CE=DF,
∵CD=
BD,
∴CE-DE=
BD;
∴DF-DE=
BD;
∵△DOH≌△COK,
∵S△BOC=S△DOC,
∴S四边形OHDK=S△OCK+S△DOK=
S△BCD.
故选D.
∴OC=OD=OB,∠OCK=∠ODH=45°,OC⊥BD,
∵EO⊥FO,
∴∠DOH=∠COK,
∴△DOH≌△COK,
∴OH=OK,∠EKO=∠FHO,
∴△FOH≌△EOK,
∴OE=OF,
∵△DOH≌△COK,
∴∠EOD=∠KOC,
∴∠FOD=∠EOC,
∵∠OCK=∠ODH=45°,OC=OD,
∴△FOD≌△EOC,
∴CE=DF,
∵CD=
| ||
2 |
∴CE-DE=
| ||
2 |
∴DF-DE=
| ||
2 |
∵△DOH≌△COK,
∵S△BOC=S△DOC,
∴S四边形OHDK=S△OCK+S△DOK=
1 |
2 |
故选D.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询