如图,在平行四边形ABCD中,∠C=60°,M、N分别是AD、BC的中点,BC=2CD.(1)求证:四边形MNCD是平行四
如图,在平行四边形ABCD中,∠C=60°,M、N分别是AD、BC的中点,BC=2CD.(1)求证:四边形MNCD是平行四边形;(2)求证:BD=MN....
如图,在平行四边形ABCD中,∠C=60°,M、N分别是AD、BC的中点,BC=2CD.(1)求证:四边形MNCD是平行四边形;(2)求证:BD= MN.
展开
李伪同志82
推荐于2019-03-25
·
TA获得超过184个赞
知道答主
回答量:127
采纳率:100%
帮助的人:125万
关注
试题分析:(1)根据平行四边形的性质,可得AD与BC的关系,根据MD与NC的关系,可得证明结论; (2)根据根据等边三角形的判定与性质,可得∠DNC的度数,根据三角形外角的性质,可得∠DBC的度数,根据正切函数,可得答案. 证明:(1)∵ABCD是平行四边形, ∴AD=BC,AD∥BC, ∵M、N分别是AD、BC的中点, ∴MD=NC,MD∥NC, ∴MNCD是平行四边形; (2)如图:连接ND, ∵MNCD是平行四边形, ∴MN=DC. ∵N是BC的中点, ∴BN=CN, ∵BC=2CD,∠C=60°, ∴△NVD是等边三角形. ∴ND=NC,∠DNC=60°. ∵∠DNC是△BND的外角, ∴∠NBD+∠NDB=∠DNC, ∵DN=NC=NB, ∴∠DBN=∠BDN= ∠DNC=30°, ∴∠BDC=90°. ∵tan , ∴DB= DC= MN. |
收起
为你推荐: