如图△ABC为等边三角形,直线a∥AB,D为直线BC上任一动点,将一60°角的顶点置于点D处,它的一边始终经过

如图△ABC为等边三角形,直线a∥AB,D为直线BC上任一动点,将一60°角的顶点置于点D处,它的一边始终经过点A,另一边与直线a交于点E.(1)若D恰好在BC的中点上(... 如图△ABC为等边三角形,直线a∥AB,D为直线BC上任一动点,将一60°角的顶点置于点D处,它的一边始终经过点A,另一边与直线a交于点E.(1)若D恰好在BC的中点上(如图1)求证:△ADE是等边三角形;(2)若D为直线BC上任一点(如图2),其他条件不变,上述(1)的结论是否成立?若成立,请给予证明;若不成立,请说明理由. 展开
 我来答
小雨_TA000B6
2015-02-02 · 超过56用户采纳过TA的回答
知道答主
回答量:107
采纳率:0%
帮助的人:139万
展开全部
(1)证明:∵a∥AB,且△ABC为等边三角形,
∴∠ACE=∠BAC=∠ABD=60°,AB=AC,
∵BD=CD,
∴AD⊥BC
∵∠ADE=60°,
∴∠EDC=30°,
∴∠DOC=180°-∠EDC-∠ACB=90°,
∴∠DEC=∠DOC-∠ACE=30°,
∴∠EDC=∠DEC,
∴EC=CD=DB,
∴△ABD≌△ACE.
∴AD=AE,且∠ADE=60°,
∴△ADE是等边三角形;

(2)在AC上取点F,使CF=CD,连结DF,
∵∠ACB=60°,
∴△DCF是等边三角形,
∵∠ADF+∠FDE=∠EDC+∠FDE=60°,
∴∠ADF=∠EDC,
∵∠DAF+∠ADE=∠DEC+∠ACE,
∴∠DAF=∠DEC,
∴△ADF≌△EDC(AAS),
∴AD=ED,
又∵∠ADE=60°,
∴△ADE是等边三角形.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式