若函数f(x)=lnx,g(x)=x-2x.(1)求函数φ(x)=g(x)-kf(x)(k>0)的单调区间;(2)若对所有

若函数f(x)=lnx,g(x)=x-2x.(1)求函数φ(x)=g(x)-kf(x)(k>0)的单调区间;(2)若对所有的x∈[e,+∞),都有xf(x)≥ax-a成立... 若函数f(x)=lnx,g(x)=x-2x.(1)求函数φ(x)=g(x)-kf(x)(k>0)的单调区间;(2)若对所有的x∈[e,+∞),都有xf(x)≥ax-a成立,求实数a的取值范围. 展开
 我来答
手机用户00150
推荐于2016-07-21 · 超过70用户采纳过TA的回答
知道答主
回答量:128
采纳率:0%
帮助的人:133万
展开全部
(1)函数φ(x)=x-
2
x
-klnx的定义域为(0,+∞).
φ′(x)=1+
2
x2
-
k
x
=
x2?kx+2
x2
,记函数g(x)=x2-kx+2,其判别式△=k2-8
①当△=k2-8≤0即0<k≤2
2
时,g(x)≥0恒成立,
∴φ′(x)≥0在(0,+∞)恒成立,φ(x)在区间(0,+∞)上递增.
②当△=k2-8>0即k>2
2
时,方程g(x)=0有两个不等的实根x1=
k?
k2?8
2
>0,x2=
k+
k2?8
2
>0.
若x1<x<x2,则g(x)<0,∴φ′(x)<0,∴φ(x)在区间(x1,x2)上递减;
若x>x2或0<x<x1,则g(x)>0,∴φ′(x)>0,∴φ(x)在区间(0,x1)和(x2,+∞)上递增.
综上可知:当0<k≤2
2
时,φ(x)的递增区间为(0,+∞);当k>2
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×
  • 个人、企业类侵权投诉
  • 违法有害信息,请在下方选择后提交

类别

  • 色情低俗
  • 涉嫌违法犯罪
  • 时政信息不实
  • 垃圾广告
  • 低质灌水

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消