(1)OB=根号下(OA的平方加AB的平方)=2根号2,
转45度,B在X轴上,所以B(2根号2,0)
(2)∵MN‖AC,
∴∠BMN=∠BAC=45°,∠BNM=∠BCA=45度.
∴∠BMN=∠BNM.
∴BM=BN.
又∵BA=BC,
∴AM=CN.
又∵OA=OC,∠OAM=∠OCN,
∴△OAM ≌△OCN.
∴∠AOM=∠CON.
∴∠AOM= 1/2(90°-45°)=22.5度.
∴旋转过程中,当MN和AC平行时,正方形OABC旋转的度数为45°-22.5°=22.5度.
(3)证明:延长BA交y轴于E点,
则∠AOE=45°-∠AOM,
∠CON=90°-45°-∠AOM=45°-∠AOM,
∴∠AOE=∠CON.
又∵OA=OC,∠OAE=180°-90°=90°=∠OCN.
∴△OAE ≌△OCN.
∴OE=ON,AE=CN.
又∵∠MOE=∠MON=45°,OM=OM,
∴△OME ≌△OMN.∴MN=ME=AM+AE.
∴MN=AM+CN,
∴p=MN+BN+BM=AM+CN+BN+BM=AB+BC=4.
∴在旋转正方形OABC的过程中,p值无变化.