已知图中三角形ABC的面积为8平方厘米AE=ED,BD=2/3BC求阴影面积?

要详细解答过程。... 要详细解答过程。 展开
 我来答
time遗忘威尼斯
推荐于2016-01-31 · TA获得超过1318个赞
知道小有建树答主
回答量:424
采纳率:100%
帮助的人:255万
展开全部
解:如图连接DF,设S(△EDF)=S1,S(△DCF)=S2,我们把各三角形的面积标出,就有:
S(△ABD)=2(2S2-S1)=8*2/3……(1)
S(△ADC)=2S1+S2=8*1/3 ……(2)

4S2-2S1=16/3 ……(3)
2S1+S2=8/3 ……(4)
(3)+(4)得:5S2=8,S2=8/5;
所以,阴影面积= S(△BDE)=S(△AEF)
=2S2-S1+S1=2S2=16/5(平方厘米)。
数学林老师
2019-02-16 · 专注中小学数学思路讲解短视频
数学林老师
采纳数:12 获赞数:420

向TA提问 私信TA
展开全部
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
汪力wl
推荐于2019-02-28
知道答主
回答量:8
采纳率:0%
帮助的人:8366
引用time遗忘威尼斯的回答:
解:如图连接DF,设S(△EDF)=S1,S(△DCF)=S2,我们把各三角形的面积标出,就有:
S(△ABD)=2(2S2-S1)=8*2/3……(1)
S(△ADC)=2S1+S2=8*1/3 ……(2)

4S2-2S1=16/3 ……(3)
2S1+S2=8/3 ……(4)
(3)+(4)得:5S2=8,S2=8/5;
所以,阴影面积= S(△BDE)=S(△AEF)
=2S2-S1+S1=2S2=16/5(平方厘米)。
展开全部
阴影部分为两个三角形,但三角形AEF的面积无法直接计算。由于AE=ED,连接DF,可知S△AEF=S△EDF(等底等高),采用移补的方法,将所求阴影部分转化为求三角形BDF的面积。
因为BD=2/3BC,所以S△BDF=2S△DCF。又因为AE=ED,所以S△ABF=S△BDF=2S△DCF。
因此,S△ABC=5 S△DCF。由于S△ABC=8平方厘米,所以S△DCF=8÷5=1.6(平方厘米),则阴影部分的面积为1.6×2=3.2(平方厘米)。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 1条折叠回答
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式