求xy"+y'=0的通解
4个回答
展开全部
(2x+cx²)y²=1。c是常数。
解:令z=1/y²,则y'=-y³z'/2
代入原方程,化简得
xz'-2z+2x=0.........(1)
再令x=e^t,则xz'=dz/dt
代入方程(1),化简得
dz/dt-2z=-2e^t..........(2)
∵方程(2)是一阶线性微分方程
于是,由一阶线性微分方程的通解公式,可得方程(2)的通解是
z=2e^t+ce^(2t)
(c是任意常数)
∴方程(1)的通解是
z=2x+cx²
故原方程的通解是(2x+cx²)y²=1。
求法
求微分方程通解的方法有很多种,如:特征线法,分离变量法及特殊函数法等等。
而对于非齐次方程而言,任一个非齐次方程的特解加上一个齐次方程的通解,就可以得到非齐次方程的通解。
优特美尔电子
2024-11-20 广告
2024-11-20 广告
优特美尔商城是深圳市优特美尔电子有限公司所属的一站式电子元器件采购平台, 依托创始人在电子元器件18年的积累,目前平台汇集了近 3000家品牌供应商、近3000万现货SKU,海内外注册用户超过3万,日均询单2000+。 优特美尔商城基于货源...
点击进入详情页
本回答由优特美尔电子提供
展开全部
Xy''+y'=0
dy/dx=p
y''=dp/dx
xdp/dx+p=0
dp/p=-dx/x
dlnp=dln(1/x)
lnp=ln(1/x)+C
p=C/x
dy/dx=C/x
dy=Cdx/x
y=Clnx+C1
dy/dx=p
y''=dp/dx
xdp/dx+p=0
dp/p=-dx/x
dlnp=dln(1/x)
lnp=ln(1/x)+C
p=C/x
dy/dx=C/x
dy=Cdx/x
y=Clnx+C1
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询