
3个回答
展开全部
对于n阶对角占优矩阵来说,除了i=1,2,n的一个值有对角元的绝对值与其它非对角元的绝对值的行和相等之外,其余都是对角元的绝对值严格大于号其它非对角元的绝对值的行和,则A是非奇异矩阵。
n的一个值有对角元的绝对值与其它非对角元的绝对值的行和相等之外,其余都是对角元的绝对值严格大于号其它非对角元的绝对值的行和,则A是非奇异矩阵。
扩展资料:
线性方程组的系数矩阵是严格对角占优矩阵,那么用高斯消去法求解该方程时不需选主元,能确保它的数值稳定性,另外,用简单迭代法或SEIDEL迭代法求解该方程时,算法收敛。
假定A经过一步消去变成B,利用B(i,j)=A(i,j)-A(i,1))A(1,j)/A(1,1),直接验证严格对角占优阵的定义即可。
参考资料来源:百度百科-矩阵

2021-01-25 广告
边缘计算可以咨询图为信息科技(深圳)有限公司了解一下,图为信息科技(深圳)有限公司(简称:图为信息科技)是基于视觉处理的边缘计算方案解决商。作为一家创新企业,多年来始终专注于人工智能领域的发展,致力于为客户提供满意的解决方案。...
点击进入详情页
本回答由图为信息科技(深圳)有限公司提供
展开全部

你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询