线性代数行列式证明题
利用行列式的性质证明:sin^2(a)cos^2(a)cos2asin^2(b)cos^2(b)cos2b=0sin^2(c)cos^2(c)cos2c...
利用行列式的性质证明:
sin^2(a) cos^2(a) cos2a
sin^2(b) cos^2(b) cos2b = 0
sin^2(c) cos^2(c) cos2c 展开
sin^2(a) cos^2(a) cos2a
sin^2(b) cos^2(b) cos2b = 0
sin^2(c) cos^2(c) cos2c 展开
2个回答
展开全部
sin^2(a) cos^2(a) cos2a
sin^2(b) cos^2(b) cos2b
sin^2(c) cos^2(c) cos2c
第2列减去第1列,得
sin^2(a) cos^2(a)-sin^2(a) cos2a
sin^2(b) cos^2(b)-sin^2(b) cos2b
sin^2(c) cos^2(c)-sin^2(c) cos2c
因为cos^2(a)-sin^2(a)=cos2a,cos^2(b)-sin^2(b)=cos2b,cos^2(c)-sin^2(c)=cos2c,
sin^2(a) cos2a cos2a
sin^2(b) cos2b cos2b
sin^2(c) cos2c cos2c
因为行列式第2列和第3列元素相同,所以行列式值为0
证毕。
newmanhero 2015年4月4日22:38:37
希望对你有所帮助,望采纳。
sin^2(b) cos^2(b) cos2b
sin^2(c) cos^2(c) cos2c
第2列减去第1列,得
sin^2(a) cos^2(a)-sin^2(a) cos2a
sin^2(b) cos^2(b)-sin^2(b) cos2b
sin^2(c) cos^2(c)-sin^2(c) cos2c
因为cos^2(a)-sin^2(a)=cos2a,cos^2(b)-sin^2(b)=cos2b,cos^2(c)-sin^2(c)=cos2c,
sin^2(a) cos2a cos2a
sin^2(b) cos2b cos2b
sin^2(c) cos2c cos2c
因为行列式第2列和第3列元素相同,所以行列式值为0
证毕。
newmanhero 2015年4月4日22:38:37
希望对你有所帮助,望采纳。
展开全部
^*
XA=2XA-8E,A^*
XA-2XA=-8E,A的行列式为det(A)=-2,A^-1=A^*det(A),故
-2A^*
XA+4XA=16E
A^-1
XA+4XA=16E
(A^-1
+4E)XA=16E
XA=16(A^-1
+4E)^-1
X=16(A^-1
+4E)^-1A^-1=16(A(A^-1
+4E))^-1=16((E
+4A))^-1
E
+4A=
5
,0
,0
0
,-7
,0
0
,0
,5
对角阵的逆等于对角线元求倒数
16((E
+4A))^-1
16/5
,0
,0
0
,-16/7
,0
0
,0
,16/5
故X=
16/5
,0
,0
0
,-16/7
,0
0
,0
,16/5
这个问题线性代数行列式证明题!,好难啊,辛辛苦苦回答了,给我个满意答案把
XA=2XA-8E,A^*
XA-2XA=-8E,A的行列式为det(A)=-2,A^-1=A^*det(A),故
-2A^*
XA+4XA=16E
A^-1
XA+4XA=16E
(A^-1
+4E)XA=16E
XA=16(A^-1
+4E)^-1
X=16(A^-1
+4E)^-1A^-1=16(A(A^-1
+4E))^-1=16((E
+4A))^-1
E
+4A=
5
,0
,0
0
,-7
,0
0
,0
,5
对角阵的逆等于对角线元求倒数
16((E
+4A))^-1
16/5
,0
,0
0
,-16/7
,0
0
,0
,16/5
故X=
16/5
,0
,0
0
,-16/7
,0
0
,0
,16/5
这个问题线性代数行列式证明题!,好难啊,辛辛苦苦回答了,给我个满意答案把
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |