函数的可导性

 我来答
Imfistblood
2016-02-06 · TA获得超过744个赞
知道小有建树答主
回答量:213
采纳率:71%
帮助的人:26.1万
展开全部
  如果函数y=f(x)在点x处可导,则函数y=f(x)在点X处连续,反之,函数y=f(x)在点x处连续,但函数y=f(x)处不一定可导!
  函数在点X处可导的充要条件是函数在点X处的左导数和右导数都存在并且相等。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
泰科博思
2024-12-27 广告
CASTEP是一款基于第一性原理计算方法的材料模拟软件,其优势包括:1.高精度。CASTEP使用密度泛函理论(DFT)进行第一性原理计算。这种基于波函数的方法不依赖于实验数据,可以获得非常高的准确性。2.广泛适用性。CASTEP适用于多种材... 点击进入详情页
本回答由泰科博思提供
dennis_zyp
推荐于2017-09-21 · TA获得超过11.5万个赞
知道顶级答主
回答量:4万
采纳率:90%
帮助的人:2亿
展开全部
f(1)=3-1=2=f(1+)
f(1-)=1+1=2
故在x=1处连续
x>1时, f'(x)=3, 即f'(1+)=3
x<1时, f'(x)=2x, 即f'(1-)=2
因此在x=1处不可导
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式