设随机变量服从参数为入的指数分布,期望和方差怎么求?

 我来答
生活家马先生
2019-05-19 · TA获得超过18.4万个赞
知道小有建树答主
回答量:136
采纳率:100%
帮助的人:3.5万
展开全部

指数分布的参数为λ,则指数分布的期望为1/λ;方差为(1/λ)^2

E(X)==∫x*f(x)dx==∫λx*e^(-λx)dx=-(xe^(-λx)+1/λ*e^(-λx))|(正无穷到0)=1/λ

E(X^2)==∫x^2*f(x)dx=∫x^2*λ*e^(λx)dx=-(2/λ^2*e^(-λx)+2x*e^(-λx)+λx^2*e^(-λx))|(正无穷到0)=2/λ^2

DX=E(X^2)-(EX)^2=2/λ^2-(1/λ)^2=1/λ^2

扩展资料

指数分布的应用

在日本的工业标准和美国军用标准中,半导体器件的抽验方案都是采用指数分布。此外,指数分布还用来描述大型复杂系统(如计算机)的平均故障间隔时间MTBF的失效分布。

但是,由于指数分布具有缺乏“记忆”的特性。因而限制了它在机械可靠性研究中的应用,所谓缺乏“记忆”,是指某种产品或零件经过一段时间t0的工作后,仍然如同新的产品一样,不影响以后的工作寿命值。

或者说,经过一段时间t0的工作之后,该产品的寿命分布与原来还未工作时的寿命分布相同。指数分布的这种特性,与机械零件的疲劳、磨损、腐蚀、蠕变等损伤过程的实际情况是完全矛盾的,它违背了产品损伤累积和老化这一过程。所以,指数分布不能作为机械零件功能参数的分布形式。

sos66666666666
推荐于2017-11-21 · TA获得超过1760个赞
知道小有建树答主
回答量:1181
采纳率:50%
帮助的人:347万
展开全部
指数函数概率密度函数:f(x)=a*e^(ax),x>0,其中a>0为常数.
f(x)=0,其他
有连续行随机变量的期望有E(X)==∫|x|*f(x)dx,(积分区间为负无穷到正无穷)
则E(X)==∫|x|*f(x)dx,(积分区间为0到正无穷),因为负无穷到0时函数值为0.
EX)==∫x*f(x)dx==∫ax*e^(-ax)dx=-(xe^(-ax)+1/a*e^(-ax))|(正无穷到0)=1/a
而E(X^2)==∫x^2*f(x)dx=∫x^2*a*e^(ax)dx=-(2/a^2*e^(-ax)+2x*e^(-ax)+ax^2*e^(-ax))|(正无穷到0)=2/a^2,
DX=E(X^2)-(EX)^2=2/a^2-(1/a)^2=1/a^2
追答
a=λ
本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
糖糖小小个
2019-12-21 · TA获得超过9023个赞
知道小有建树答主
回答量:1592
采纳率:82%
帮助的人:44.5万
展开全部
指数函数概率密度函数:f(x)=a*e^(ax),x>0,其中a>0为常数.

f(x)=0,其他

有连续行随机变量的期望有E(X)==∫|x|*f(x)dx,(积分区间为负无穷到正无穷)

则E(X)==∫|x|*f(x)dx,(积分区间为0到正无穷),因为负无穷到0时函数值为0.

EX)==∫x*f(x)dx==∫ax*e^(-ax)dx=-(xe^(-ax)+1/a*e^(-ax))|(正无穷到0)=1/a

而E(X^2)==∫x^2*f(x)dx=∫x^2*a*e^(ax)dx=-(2/a^2*e^(-ax)+2x*e^(-ax)+ax^2*e^(-ax))|(正无穷到0)=2/a^2,

DX=E(X^2)-(EX)^2=2/a^2-(1/a)^2=1/a^2
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式