y=-x²+4x-3=-(x²-4x+3)=-(x-1)(x-3)=0,得零点x₁=1,x₂=3;
y=-(x²-4x)-3=-[(x-2)²-4]-3=-(x-2)²+1;对称轴x=2,顶点(2,1);
y'=-2x+4;y'(0)=4;过(0,-3)的切线方程为y=4x-3;
y'(3)=-6+4=-2;过(3,0)的切线方程为y=-2(x-3)=-2x+6;
令4x-3=-2x+6,解得x=9/6=3/2,y=3;即两条切线的交点的坐标为(3/3,3).
两条切线与抛物线所围图形的面积S: