大神,第5题 20
1个回答
展开全部
(1) 证明
X1 = 2^(1/2) < 2
假设 Xn < 2^(1/2)
有 Xn+1 = ( 2* Xn)^(1/2) < ( 2*2)^(1/2) = 2
由数学归纳法知,
Xn < 2^(1/2)
由于 Xn+1 / Xn = ( 2/Xn)^(1/2) > ( 2/2)^(1/2) = 1
故 有 Xn+1 > Xn
因此 数列 { Xn} 单调增大且有上界,因此,其极限存在,设其为 a ,有
a = (2a)^(1/2)
解得 a = 2
(2) 解:
显然,当 n > 1 时, Xn > 1
X1 = 1 < [ 5^(1/2) + 1 ] / 2
假设 X n < [ 5^(1/2) + 1 ] / 2
Xn+1 = 1 + Xn/(1+ Xn)
= 1 + 1 /( 1/Xn + 1 ) < 1 + 1 / ( 1/ {[ 5^(1/2) + 1 ] / 2 } + 1 ) = [ 5^(1/2) + 1 ] / 2
由数学归纳法知,
X n < [ 5^(1/2) + 1 ] / 2
又 Xn+1 - Xn = 1 + Xn/(1+ Xn) - Xn
= (Xn - [ 5^(1/2) + 1 ] / 2 ) (Xn + [5^(1/2) - 1 ] / 2 ) / (1 + Xn) > 0
故 Xn+1 > Xn
Xn 单调增大且有上界,故 极限存在。
令 lim { Xn} = a
有 a = 1 + a/( 1 + a )
解得 a = [ 5^(1/2) + 1 ] / 2
X1 = 2^(1/2) < 2
假设 Xn < 2^(1/2)
有 Xn+1 = ( 2* Xn)^(1/2) < ( 2*2)^(1/2) = 2
由数学归纳法知,
Xn < 2^(1/2)
由于 Xn+1 / Xn = ( 2/Xn)^(1/2) > ( 2/2)^(1/2) = 1
故 有 Xn+1 > Xn
因此 数列 { Xn} 单调增大且有上界,因此,其极限存在,设其为 a ,有
a = (2a)^(1/2)
解得 a = 2
(2) 解:
显然,当 n > 1 时, Xn > 1
X1 = 1 < [ 5^(1/2) + 1 ] / 2
假设 X n < [ 5^(1/2) + 1 ] / 2
Xn+1 = 1 + Xn/(1+ Xn)
= 1 + 1 /( 1/Xn + 1 ) < 1 + 1 / ( 1/ {[ 5^(1/2) + 1 ] / 2 } + 1 ) = [ 5^(1/2) + 1 ] / 2
由数学归纳法知,
X n < [ 5^(1/2) + 1 ] / 2
又 Xn+1 - Xn = 1 + Xn/(1+ Xn) - Xn
= (Xn - [ 5^(1/2) + 1 ] / 2 ) (Xn + [5^(1/2) - 1 ] / 2 ) / (1 + Xn) > 0
故 Xn+1 > Xn
Xn 单调增大且有上界,故 极限存在。
令 lim { Xn} = a
有 a = 1 + a/( 1 + a )
解得 a = [ 5^(1/2) + 1 ] / 2
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询