如何发挥几何画板在初中数学教学中的作用

 我来答
她是我的小太阳
高粉答主

2016-03-12 · 醉心答题,欢迎关注
知道顶级答主
回答量:5.1万
采纳率:83%
帮助的人:8599万
展开全部
  《几何画板》在初中数学课堂教学中的运用及体会
  内容摘要:近年来,随着我国经济实力的增强,农村中小学经费的投入逐年的增加,计算机的普及,现代教育技术在教育教学中广泛的使用。许多的教育软件诞生,大大的促进了教育教学工作。本文针对数学学科的特点,以及《几何画板》的功能,具体谈了谈《几何画板》在初中数学教学中运用的可行性、运用及体会。
  关键词:《几何画板》初中数学 课堂教学 运用
  随着学校计算机的普及,班班多媒体的实现,教师在教学中使用的软件也多了起来。作为一名普通的数学教师,我对《几何画板》软件却情有独钟,教学中运用得得心应手,辅助了课堂教学,也大大激发了学生的学习兴趣。下来我结合自己的教学实践谈一谈《几何画板》在初中数学课堂教学中的运用及体会。
  一、《几何画板》在初中数学课堂教学中运用的可行性。
  1、数学学科以及初中数学的特点。
  数学是一门抽象性、逻辑性很强的学科。初中数学教学中对数学直观性背景的创设和数学探究发现过程的展示注意较少,学生靠想象去理解,造成兴趣不高、理解能力、探究能力薄弱,从而给课堂教学带来了困难。
  2、《几何画板》的特点。
  几何画板是一个通用的数学、物理教学环境,提供丰富而方便的创造功能使用户可以随心所欲地编写出自己需要的教学课件。是最出色的教学软件之一。它主要以点、线、圆为基本元素,通过对这些基本元素的变换、构造、测算、计 算、动画、跟踪轨迹等,构造出其它较为复杂的图形。是数学、物理教学中强有力的工具。
  3、初中数学课堂教学中使用《几何画板》的好处。
  (1)、有较强的绘制几何图形以及函数图象的功能,在作图中保持几何关系的不变性(如:中点、垂直等),大大方便了计算机的作图。
  (2)、数形结合是数学学科最重要的思想方法之一,是联系数学直观和抽象的主要工具。使用《几何画板》增强了教学的直观性,展示了数学美。例如:勾股树的展示。
  (3)、能动态地演示学科知识的形成过程,能比较容易地突破学科教学中的重点、难点。把数学的抽象思维变成了一种现实。
  (4)、方便的计算功能。计算测量线段的长度、角的大小。
  (5)、变换功能使图形变换变得更易于操作。
  二、《几何画板》在初中数学中的具体运用。
  (一)、在函数教学中的运用。
  函数教学中使用《几何画板》主要有以下几个方面。
  (1)、绘制函数图象。在有关函数的传统教学中多以教师手工绘图为主,但手工绘图有不精确、速度慢的弊端;应用《几何画板》快速直观的显示及变化功能则可以克服上述弊端,大大提高课堂效率,进而起到事倍功半的效果。具体说来,可以用《几何画板》根据函数的解析式快速作出函数的图象,并可以在同一个坐标系中作出多个函数的图象。
  (2)、利用《几何画板》认识函数关系式中的常量在函数图象中的作用。例如在教学“一次函数的性质”时,可以使用《几何画板》制作一次函数图象,如图所示。并设置四个动画按钮,分别是“K增大”、 “K减小”、 “b增大”、 “b减小”。当按下“K增大”按钮,函数解析式“y=4x+0”中的“K”开始增大,同时函数图象也进行相应的变化;当按下“K减小”按钮,函数解析式“y=2x+1”中的“K”开始减小,同时函数图象也进行相应的变化。在此过程中学生很直观的就搞清楚了K在函数图象中的作用。对“b”的研究和“K”类似。
  (3)、利用《几何画板》学习函数的单调性。例如在学习“一次函数的性质”时,可以使用《几何画板》制作一次函数图象,在图象上任找一点P(如图所示)。过点P做x轴、y轴的垂线,并利用“度量功能”分别把与x轴、y轴的交点的横坐标、纵坐标度量出来,并利用“合并功能”合并到这两个点。当拖动点p时,两坐标的值发生变化,直观的看出“y随x的变化情况”。
  (二)、在解决“动点(动线、动画)”问题,动态展示数学问题中的运用。几何画板能动态地保持平面图形中给定的几何关系,利用这一特点便于在变化的图形中发现恒定不变的几何规律。如平行、垂直,中点,角平分线等等都能在图形的变化中保持下来,不会因图形的改变而改变,这也许是几何画板中最富有魅力的地方。在平面几何的教学中如果能很好地发挥几何画板中的这些特性,就能为数学教学增辉添色。
  例如,已知:在矩形ABCD中,点p是AD边上的一个动点,过点p分别做对角线AC、BD的垂线,垂足分别为E、F,且AB=6,BC=8,求,PE+PF的值。
  对于动点的问题,学生很难想象p点的运动中PE,PF的变化,做如图的《几何画板》课件很直观的解决了这个问题。把点p设置成动点,按下“运动p点”按钮,p点开始运动,同时,PE、PF的值发生变化,但PE+PF的值不变。至此学生理解PE+PF为一定值。
  (三)、变换教学中的使用。
  《几何画板》提供了四种“变换”工具,包括平移、旋转、缩放和反射变换。在图形变换的过程中,图形的某些性质始终保持一定的不变性,几何画板能很好地反应出这些特点。研究轴对称变换(几何画板中称为“反射变换”)时,可利用《几何画板》的“反射变换”作△ABC和△A′B′C′关于y轴对称。任意拖动三角形ABC的顶点或边上任取的点D,虽然图形的位置、形状和大小在发生变化,但对应点的连线段始终保持被对称轴垂直平分,再观察对应点的坐标,发现对应点横坐标互为相反数,纵坐标相等的特点。研究平移变换时,作△A′B′C′是△ABC平移后的图形。只要拖动矢量点或三角形上的点,图形中始终保持对应点连线段平行且相等,四边形AA′C′C始终是平行四边形。再仔细观察图形中点的坐标,可以发现任意一对对应点的横坐标的差都一样,纵坐标的差也一样。而这些在以往的数学教学中,在黑板上作图,不仅画变换图形比较费时枯燥,而且无法表达这种变化中的不变因素。因此,用几何画板来研究图形的变换更有利于培养学生探究知识的兴趣。如果把教学活动移到微机教室进行,让每个学生亲手实验,不断改变三角形或原图形的形状、大小和位置,学生就能看到变换后的图形随着原图形的变化而变化,能更好地理解变换的本质特征。而对每一点的坐标的研究也观察得更清晰,这样更有利于培养学生的实践能力和探究意识。
  (四)、平面几何变式教学中的运用。可以增加教学容量,拓展学生的思路,还有利于培养学生的发散思维。
  例如,AB=AC,D是△ABC内一点,∠BAC=∠DAE,∠ABD=∠ACE。求证:BD=CE。
  对这个例题的教学,我用几何画板做了这样一个课件,先画一个等腰三角形,AB=AC,在三角形内部取一点D,用“变换”工具把△ABD逆时针方向旋转∠BAC的度数。得到△AEC。当完成对BD=CE的证明后,我提出:当点D在△ABC边上或外部时,其他条件不变,上面的结论还成立吗?我一边提问一边拖动点D,这样不仅增加了课堂教学的容量,增加了变式的速度,说到做到,又给人自然流畅,耳目一新的感觉。
  三、《几何画板》运用中的几点体会。
  (一)、运用《几何画板》首先要熟悉软件的功能,还要结合数学问题本身所蕴含的数学知识及不变性。
  (二)、运用《几何画板》中的颜色功能,有利于强调或区分部分图形,帮助学生理解。
  (三)、可以让学生利用《几何画板》去自助的研究数学问题或探究数学知识。《几何画板》的操作比较简单,学生易于上手,让学生学会利用《几何画板》去研究数学问题,从面找到解决数学问题的方法,在数学习题的教学中有着重要的意义,对提高学生自主探究的学习能力,培养学生的数学思维能力能起到重要的作用。
  例如,在边长为a的正方形ABCD中,对角线AC、BD相交于点O,正方形OFEG与边BC,CD相交于点N、M,求四边形ONCM的面积。该问题解决关键在于得出四边形ONCM的面积与三角形OBC的面积相等,引导学生注意四边形OFEG的运动特征,让学生应用《几何画板》的动画特征,转动正方形OFEG,观察四边形ONCM面积的变化,从而探究出S四边形ONCM=S△OBC的结论;
  以上是本人在教学中运用《几何画板》的一点体会,其实《几何画板》的运用不是一两句话可以叙述清楚的。深刻挖掘教材,会有许多这样的例子,不用花多少时间,就会收到很好的效果。
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式