这两道题导数怎么求,要详细步骤
1个回答
展开全部
(1)
y=cos(x/2)[sin(x/2)-cos(x/2)]
=½[2sin(x/2)cos(x/2)-cos²(x/2)]
=½[sinx -(1+cosx)]
=½sinx -½cosx -½
y'=½cosx+½sinx=½(sinx+cosx)
(2)
y=(e^x +1)/(e^x -1)
y'=[(e^x +1)'(e^x -1)-(e^x +1)(e^x -1)']/(e^x -1)²
=[e^x·(e^x -1)-(e^x +1)·e^x]/(e^x -1)²
=[(e^x)²-e^x -(e^x)²-e^x]/(e^x -1)²
=-2e^x/(e^x -1)²
y=cos(x/2)[sin(x/2)-cos(x/2)]
=½[2sin(x/2)cos(x/2)-cos²(x/2)]
=½[sinx -(1+cosx)]
=½sinx -½cosx -½
y'=½cosx+½sinx=½(sinx+cosx)
(2)
y=(e^x +1)/(e^x -1)
y'=[(e^x +1)'(e^x -1)-(e^x +1)(e^x -1)']/(e^x -1)²
=[e^x·(e^x -1)-(e^x +1)·e^x]/(e^x -1)²
=[(e^x)²-e^x -(e^x)²-e^x]/(e^x -1)²
=-2e^x/(e^x -1)²
更多追问追答
追问
谢谢
第一步和第二步好像对不上啊
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询