高考函数的热点有哪些?

 我来答
O客
2016-03-19 · TA获得超过3.3万个赞
知道大有可为答主
回答量:7652
采纳率:88%
帮助的人:3401万
展开全部
原创/O客
从近五年高考数学试题全国和各省市卷看,高考函数热点问题集中在四个关键词:导数应用、与不等式综合、三角函数应用 、函数模型应用.
●导数应用. 频繁出现的考点有:求切线;零点与导数,利用导数求极值或单调性,进而利用零点存在性、惟一性定理判断零点个数;导数法研究三次函数的图象和性质,尤其它的极值与零点关系;
再求导问题,即对导数或其部分进行再求导,不是判别凸凹性,而是求解导数的单调性或极值,进而判断导数的符号和零点.
两次求导屡见不鲜,三次求导已露真容.
例如(2013·广东)设函数f(x)=(x-1)e^x-kx^2(k∈R). 当k∈(1/2,1]时,求函数f(x)在[0,k]上的最大值M.
由于解析式和区间均含有参数,本例的实质是(当参数k变化时)求动曲线在动区间上的最大值问题,颇具难度.在解题过程中,我们不仅三次构造辅助函数,而且有三次求导运算.
我们知道,函数f(x)在闭区间[0,k]上的最大值,只能在区间端点或极大值点取得. 因此,我们先讨论函数f(x)在这个区间上的单调性及极值,首先对f(x)求导,并得到驻点0和ln(2k).为判断驻点是否在这个区间内,需要比较k与ln(2k)的大小,构造辅助函数g(x)并求导(第二次),当推得最大值在端点产生时,需要比较f(0)、f(k)的大小,构造函数f(k)-f(0),并用它的部分构造辅助函数h(x)并求导(第三次). 最终,巧妙地用图象法,比较了e^k与2k+1的大小,从而避免了第四次求导.
● 函数与不等式综合. 往往用导数法证明含参数的不等式.
● 三角函数. 利用三角函数图象、性质、公式求解正弦型函数y=Asin(ωx+φ)的性质及参数,或解三角形.
●利用对数、指数、幂、三角函数模型解决实际问题。
●抽象函数问题.
……
以上内容包含于《函数系列专题讲座》一书. 该书分为函数概念、性质、专题、应用、简易函数、初等函数、派生函数、导函数等8章. 贯通初中、高中、高考. 其全面性、综合性、突重性、时效性独树一帜. 由O客编著,21万字,江西科技出版社出版. 联系2836395133@qq.com
匿名用户
2016-03-19
展开全部
跟导数结合 求单调性
三角函数
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式