线性代数题,求教大神!
a1 X X ⋯ X
X a2 X ⋯ X
X X a3 ⋯ X
⋮ ⋮ ⋮ ⋱ ⋮
X X X ⋯ an
将最后1行乘以-1,加到其余行
a1-X 0 0 ⋯ X-an
0 a2-X 0 ⋯ X-an
0 0 a3-X ⋯ X-an
⋮ ⋮ ⋮ ⋱ ⋮
X X X ⋯ an
前n-1行的各行分别乘以相应倍数-(Xai-X),加到最后1行将最后1行的前n-1项都化为0
a1-X 0 0 ⋯ X-an
0 a2-X 0 ⋯ X-an
0 0 a3-X ⋯ X-an
⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 ⋯ (an-X)(1+n
∑
i=1Xai-X)
对角线元素相乘(a1-X)(a2-X)(a3-X)⋯((an-X)(1+n
∑
i=1Xai-X)) = n
∏
i=1(ai-X)(1+n
∑
i=1Xai-X)