什么叫函数f在闭区间上可导
7个回答
展开全部
f(x)有定义是f(x)在区间上连续的必要而不充分条件.有定义不一定连续.还需加上极限存在才能推出连续。
如果函数f(x)在(a,b)中每一点处都可导,则称f(x)在(a,b)上可导,则可建立f(x)的导函数,简称导数,记为f'(x) 如果f(x)在(a,b)内可导,且在区间端点a处的右导数和端点b处的左导数都存在,则称f(x)在闭区间[a,b]上可导,f'(x)为区间[a,b]上的导函数。
函数(function)在数学中是两不为空集的集合间的一种对应关系:输入值集合中的每项元素皆能对应唯一一项输出值集合中的元素。
其定义通常分为传统定义和近代定义,前者从运动变化的观点出发,而后者从集合、映射的观点出发。函数概念含有三个要素:定义域A、值域C和对应法则F。
展开全部
如果函数f(x)在(a,b)中每一点处都可导,则称f(x)在(a,b)上可导,则可建立f(x)的导函数,简称导数,记为f'(x)。
如果f(x)在(a,b)内可导,且在区间端点a处的右导数和端点b处的左导数都存在,则称f(x)在闭区间[a,b]上可导,f'(x)为区间[a,b]上的导函数,简称导数。
如果f(x)在(a,b)内可导,且在区间端点a处的右导数和端点b处的左导数都存在,则称f(x)在闭区间[a,b]上可导,f'(x)为区间[a,b]上的导函数,简称导数。
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
首先函数在闭区间上要连续,而且不会存在导数表达式中分母为0的点
本回答被提问者和网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
就是函数在闭区间上的每一点都有导数存在。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
首先函数在闭区间上要连续,而且不会存在导数表达式中分母为0的点
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |