变上限积分如何求偏导?

 我来答
一叹t
高能答主

2021-01-01 · 我们不创作,我们只是信息的搬运工。
一叹t
采纳数:2138 获赞数:11972

向TA提问 私信TA
展开全部

由变限积分的求导规则得出最后结果为-2x^2*y^2e(-x^2*y^2)。计算过程如下:

fx=y*e(-x^2*y^2);fxx=-2y^3*x*e(-x^2*y^2)。

fxy=e(-x^2*y^2)-2x^2*y^2e(-x^2*y^2)。

fy=x*e(-x^2*y^2);fyy=-2x^3*y^2e(-x^2*y^2)。

原式=x/y*fxx-2fxy+y/x*fyy

=-2y^2*x^2*e(-x^2*y^2)-2[e(-x^2*y^2)-2x^2*y^2e(-x^2*y^2)]--2y^2*x^2*e(-x^2*y^2)

=-4y^2*x^2*e(-x^2*y^2)+4y^2*x^2*e(-x^2*y^2)-2e(-x^2*y^2)

=-2e(-x^2*y^2)

扩展资料:

偏导数的定义

x方向的偏导

设有二元函数 z=f(x,y) ,点(x0,y0)是其定义域D 内一点。把 y 固定在 y0而让 x 在 x0 有增量 △x ,相应地函数 z=f(x,y) 有增量(称为对 x 的偏增量)△z=f(x0+△x,y0)-f(x0,y0)。

如果 △z 与 △x 之比当 △x→0 时的极限存在,那么此极限值称为函数 z=f(x,y) 在 (x0,y0)处对 x 的偏导数,记作 f'x(x0,y0)或函数 z=f(x,y) 在(x0,y0)处对 x 的偏导数。

实际上就是把 y 固定在 y0看成常数后,一元函数z=f(x,y0)在 x0处的导数。

y方向的偏导

同样,把 x 固定在 x0,让 y 有增量 △y ,如果极限存在那么此极限称为函数 z=(x,y) 在 (x0,y0)处对 y 的偏导数。记作f'y(x0,y0)。

偏导数的几何意义

偏导数 f'x(x0,y0) 表示固定面上一点对 x 轴的切线斜率;偏导数 f'y(x0,y0) 表示固定面上一点对 y 轴的切线斜率。

参考资料来源:百度百科-偏导数

笑年1977
2016-06-18 · TA获得超过7.2万个赞
知道大有可为答主
回答量:2.2万
采纳率:81%
帮助的人:1.2亿
展开全部

如图

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式