人造血管的简介
汉语拼音:renzao xueguɑn
人造血管
英文:man-made vascular graft
20世纪50年代研制成功无缝的人造血管,并开始临床应用。对人造血管的要求是:物理和化学性能稳定;网孔度适宜;具有一定的强度和柔韧度;作搭桥手术时易缝性好;血管接通放血时不渗血或渗血少且能即刻停止;移入人体后组织反应轻微;人体组织能迅速形成新生的内外膜;不易形成血栓;以及令人满意的远期通畅率。
目前用于制造人造血管的原料有涤纶、聚四氟乙烯、聚氨酯和天然桑蚕丝。
织造的方法有针织、编织和机织。织成管状织物后,经后处理加工成为螺旋状的人造血管,可随意弯曲而不致吸瘪。60年代出现以高分子聚四氟乙烯为原料经注塑而成的直型人造血管,商品名称为考尔坦克斯(Core-Tex),已广泛应用于临床。以涤纶或塔氟纶为原料织制的人造血管有茸毛状的管壁。
目前已经商品化的多种高分子材料大口径人造血管均已达到实用水平,包括有(1)涤纶人造血管;(2)真丝人造血管; (3)膨体聚四氟乙烯(ePTFE)人造血管。
涤纶人造血管是最早使用的血管材料,且由于通畅率较高,长期以来被成功地用于大血管置换,但无法完全满足小口径人造血管的制造要求。其后研制的真丝人造血管由于其螺旋型绉缩不够稳定,易造成血管吸瘪,且保形性差、强力较低,而限制了临床的应用。国内外应用最广泛的人造血管材料是膨化聚四氟乙烯,它具有很好的生物相容性与抗凝性,但顺应性较差,移植物的通畅率仅为30%,尤其是直径小于6mm的ePTFE人造血管上述缺点更加明显,远期通畅率极差。它们三者的根本缺陷在于顺应性都非常差,完全不具备人体动脉的柔韧性与弹性,这个缺陷在与小口径动脉吻合时就表现的非常明显,这也是血栓易在吻合口部位形成的主要原因。
小口径人造血管的研制与开发一直是国际上近十年来的热点,但是到目前为止都没有正式的产品诞生,原因在于小口径人造血管的生物相容性和抗凝血的要求远远高于普通的大口径人造血管。而目前全世界每年有近100万的心脏病患者需要接受心脏搭桥手术,现在所用的移植血管依然是取自患者自己的人体血管,而人体自身的血管是很有限的,而且创伤也非常大,现在亟待解决的就是能够生产出符合搭桥要求的小口径人造血管,其市场前景将非常客观。
近年来聚氨酯(PU)材料倍受关注,这种材料与ePTFE相比较具有更优良的生物相容性,有人认为用PU材料制作的人造血管可以解决上述问题,因此它是国外许多学者目前研究的方向。对于PU型小口径人造血管,在我国也有不少的研究报道。
聚氨酯材料的微相分离结构使其具有比其它高分子材料更好的生物相容性(包括血液相容性和组织相容性),这种结构非常类似生物体血管内壁:宏观上是十分光滑的表面,但是从微观上看,却是一个双层脂质的液体基质层,中间嵌有各类糖蛋白和糖脂质。这种宏观光滑、微观多相分离的结构使其血管壁具有优异的抗凝血性能。同时PU又具有优异的耐疲劳性、耐磨性、高弹性和高强度,因此被广泛用于生物医学材料领域,用于制作人工心脏、人工肝、介入导管及高分子控缓释药物,等等。
PU用于生物体内已有多年的历史,而PU用于人造血管的研究仅10年的历史。Gupta将PU与聚酯混编在一起,制成一种与人颈总动脉顺应性极为相似的内径为4~6mm的人造血管,在犬体内试验表明植入6个月后,该血管通畅率良好,而且血管表面形成了一薄层稳定的新生内膜。Jeschke则研制出内径1.5mm, 长10mm的PU血管,将其经过碳化处理得到的PU血管与ePTFE血管进行动物实验对比,发现PU血管比ePTFE血管具备更优良的性能。
虽然PU植入人体内的历史已有30年,但是迄今为止,已有的PU材料还不能满足人造血管临床应用的高标准。如在长期使用过程中发现PU在体内会出现老化降解和钙化现象,材料出现裂纹,甚至全部破坏。许多研究者对PU的降解机理进行了研究,认为PU降解机理主要为免疫反应细胞如巨噬细胞、异物巨细胞所引起的氧化降解。从我们前期所做的动物实验中,我们发现植入到狗颈动脉的小口径PU复合人造血管,2个月后行组织病理检查,发现人造血管的管壁内有较多散在的炎性细胞的侵润,进一步证实了上面的结论。因而炎性反应是诱发降解的根本因素,那么提高材料的组织相容性就是使材料不诱发或少诱发机体的炎性反应。但是当对材料进行修饰改性,提高其组织相容性时,往往又会给材料的力学性能甚至血液相容性带来负面影响。
2023-08-01 广告