用数学归纳法怎么证明琴生不等式!!急!! 悬赏可追加!!! 30

用数学归纳法怎么证明琴生不等式!!急!!悬赏可追加!!!... 用数学归纳法怎么证明琴生不等式!!急!!
悬赏可追加!!!
展开
 我来答
简单就好hR
2016-09-27 · TA获得超过1万个赞
知道小有建树答主
回答量:835
采纳率:40%
帮助的人:107万
展开全部
下面只对凸函数加以证明.
首先我们对n是2的幂加以证明,用数学归纳法
假设对于n=2^k琴生不等式成立,那么对于n=2^(k+1)
(f(x1)+f(x2)+...+f(xn))/n
=((f(x1)+f(x2)+...+f(x(n/2)))/(n/2)+(f(x(n/2+1))+...+f(xn))/(n/2))/2
≥(f(((x1+x2+...+x(n/2))/(n/2))+f((x(n/2+1)+...+xn)/(n/2)))/2
≥f(((((x1+x2+...+x(n/2))/(n/2)+(x(n/2+1)+...+xn)/(n/2)))/2)
=f((x1+x2+...+xn)/n)
所以对于所有2的幂,琴生不等式成立.
现在对于一个普通的n,如果n不是2的幂,我们可以找到一个k,使得2^k>n
然后我们设
x(n+1)=x(n+2)=...=x(2^k)=(x1+x2+...+xn)/n
代入2^k阶的琴生不等式结论,整理后就可以得到结论.
现在看看如何使用琴生不等式证明平方平均不等式
(x1^2+x2^2+...+xn^2)/n>=[(x1+x2+...+xn)/n]^2
显然,我们可以查看函数f(x)=x^2
由于
(f(x1)+f(x2))/2=(x1^2+x2^2)/2=(2x1^2+2x2^2)/4≥(x1^2+x2^2+2x1x2+(x1-x2)^2)/4≥(x1^2+x2^2+2x1x2)/4=((x1+x2)/2)^2
所以f(x)=x^2是凸函数
所以我们可以得到,对于任意x1,x2,...,xn,
有(f(x1)+f(x2)+...+f(xn))/n≥f((x1+x2+...+xn)/n)
也就是n阶平方平均不等式.
从上面证明过程我们知道通常情况用初等方法判断函数的凹凸性比较麻烦.
不过如果利用数学分析我们可以有个非常方便的结论.
如果f(x)二阶可导,而且f''(x)≥0,那么f(x)是下凸函数(凸函数)
如果f(x)二阶可导,而且f''(x)≤0,那么f(x)是上凸函数(凹函数)
至于这个证明,只要使用f(x)的泰勒展开式,利用其二阶余项就可以证明的.(或者构造一个函数采用中值定理)
追问
复制得真他吗好!你怎么不滚!
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式