图中第四题求解
3个回答
展开全部
y'=dy/dx=(dy/dt)/(dx/dt)=(1+cost)/-sint
更多追问追答
追问
我觉得是y'=(dy/dt)/(dt/dx)=(1+cost)/(arccosx求导结果)这样对不对
追答
(dy/dt)*(dt/dx)=(1+cost)*(-(1-x^2)^(-1/2))=(1+x))*(-(1-x^2)^(-1/2))=(1+cost)/-sint
dy/dx=(dy/dt)*(dt/dx)
不等于(dy/dt)/(dx/dt)
这种算出来是一样,就是一个用x表示,一个用t表示
展开全部
f(x)=e^x - x + 1/2 x^2≥1/2x^2+ax+b即 e^x >=(a+1)x +b成立
(a+1)b的最大值,我们考虑(a+1),b同号时的情况。不妨设a+1>0,b>0
则e^x >=(a+1)x +b中,令x=1得a+1+b<=1
从而(a+1)b <=[(a+1)+b]^2 /4=1/4
即(a+1)b的最大值=1/4
(a+1)b的最大值,我们考虑(a+1),b同号时的情况。不妨设a+1>0,b>0
则e^x >=(a+1)x +b中,令x=1得a+1+b<=1
从而(a+1)b <=[(a+1)+b]^2 /4=1/4
即(a+1)b的最大值=1/4
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询