2,3,4题怎么解😭,算不对啊😖
2个回答
展开全部
证明(x-1)F(x)≧0
问题等价于证明①当0<x≦1时, F(x)≦0; ②当x>1时, F(x)≧0.
事实上, F'(x)=lnx+(x+1)/x-1=lnx+1/x=(xlnx+1)/x>0
即F(x)在定义域(0,正无穷)上是单调增加函数
而F(0)=0, 所以当0<x≦1时, 有F(x)<F(0)=0;即①得证
当x>1时,有 F(x)>F(0)=0. 即②得证
综上所述
即(x-1)F(x)≧0得证
∵y=x^3,∴y'=3x^2
设切线与曲线y=x^3的切点为(m,m^3)
那么切线的斜率k=3m^2
∵切线过点(1,0)和(m,m^3)
∴k=(m^3-0)/(m-1)=3m^2
2m^3-3m^2=0
∴m=3/2,k=27/4
设切线与曲线y=ax^2+(15/4)x-9的切点是(n,an^2+(15/4)n-9)
∵y=ax^2+(15/4)x-9,y'=2ax+15/4
∴k=2an+15/4=27/4,∴a=3/(2n)
又∵k=[an^2+(15/4)n-9-0]/(n-1)=27/4
∴n=-3/2,a=-1.
问题等价于证明①当0<x≦1时, F(x)≦0; ②当x>1时, F(x)≧0.
事实上, F'(x)=lnx+(x+1)/x-1=lnx+1/x=(xlnx+1)/x>0
即F(x)在定义域(0,正无穷)上是单调增加函数
而F(0)=0, 所以当0<x≦1时, 有F(x)<F(0)=0;即①得证
当x>1时,有 F(x)>F(0)=0. 即②得证
综上所述
即(x-1)F(x)≧0得证
∵y=x^3,∴y'=3x^2
设切线与曲线y=x^3的切点为(m,m^3)
那么切线的斜率k=3m^2
∵切线过点(1,0)和(m,m^3)
∴k=(m^3-0)/(m-1)=3m^2
2m^3-3m^2=0
∴m=3/2,k=27/4
设切线与曲线y=ax^2+(15/4)x-9的切点是(n,an^2+(15/4)n-9)
∵y=ax^2+(15/4)x-9,y'=2ax+15/4
∴k=2an+15/4=27/4,∴a=3/(2n)
又∵k=[an^2+(15/4)n-9-0]/(n-1)=27/4
∴n=-3/2,a=-1.
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询