实对称矩阵一定能对角化怎么证明

 我来答
帐号已注销
2021-01-30 · TA获得超过129个赞
知道小有建树答主
回答量:165
采纳率:100%
帮助的人:5.2万
展开全部
楼上的太难,需要很多超出线性代数的内弄。若能证明下列命题,你的问题便也立即得到解决了。
设A是一个n阶实对称矩阵,那么可以找到n阶正交矩阵T,使得(T的逆阵)AT为对角矩阵
证明:当n=1时结论显然成立。现在证明若对n-1阶实对称矩阵成立,则 对n阶实对称矩阵也成立。设シ是A的一个特征值(n阶矩阵一定有n个特征值(计数重复的)),设α是A 的一个特征向量(α是列向量)。((α的转置)*A)的转置=Aα=シα。因为特征向量的非零倍数仍然是特征向量,所以只要把α的每一个元都除以イ,其中イ的平方=(α的转置)*α,就使得α为单位向量(所谓单位向量就是(α的转置)*α=1)。显然所有的单位向量有无数个,且显然可以找到足够多的列单位向量,使得他们与α的内积为0且他们两两内积等于0,因为正交矩阵的充要条件是列(行)向量两两正交且都是单位向量,又因为对方阵而言若AB=E则BA=E,故可以 以α为第一列人工写出一个正交矩阵Q,(所谓正交矩阵就是(Q的转置)*Q=Q*(Q的转置)=E)。由((α的转置)*A)的转置=Aα=シα 得(Q的转置)A的第一行是(シα)的转置,于是 (Q的转置)AQ的第1行第1列处是シ(α的转置)α= シ,还可以推出(Q的转置)AQ的第一列除了第一行以外都是0(至于这是为啥实在不方便打字,读者可以自己算一下,提示一下 设t是T是元,tij*t+t..*t..+t..*t..+t..*t..时若每一项的角标都不完全一样,那么这些加起来就是0)。因为Q是正交矩阵,((Q的逆阵)AQ)的转置=(Q的转置)(A的转置)(Q的逆阵的转置)=(Q的逆阵)AQ,所以(Q的逆阵)AQ也是对称矩阵,所以它第一行除了第一列以外也都是0,而除了第一行第一列剩下的一大块矩阵还是一个对称矩阵,所以最后可以反复进行这个过程整成对角矩阵。证毕

然而正交矩阵一定是可逆矩阵,对方阵而言可逆等价于满秩,乘以一个方阵满秩方阵以后秩不变,这就证明了你的实对称矩阵一定可以相似对角化
普海的故事
2017-02-22 · TA获得超过3974个赞
知道大有可为答主
回答量:6496
采纳率:0%
帮助的人:936万
展开全部
接证明更强的结论:Hermite矩阵可以酉对角化
如果A是Hermite阵,取A的一个单位特征向量x,张成一个酉阵Q=[x,*]
那么Q^HAQ具有分块结构
λ 0
0 B
对B用归纳假设就行了
本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式