大一高等数学 微积分 差分方程 怎么写成复指数形式的?
- 你的回答被采纳后将获得:
- 系统奖励15(财富值+成长值)+难题奖励20(财富值+成长值)
1个回答
2017-08-15
展开全部
1、lim[x→+∞] x(3x-√(9x²-6))
分子有理化
=lim[x→+∞] x(3x-√(9x²-6))(3x+√(9x²-6))/(3x+√(9x²-6))
=lim[x→+∞] 6x/(3x+√(9x²-6))
分子分母同除以x
=lim[x→+∞] 6/(3+√(9-6/x²))
=1
2、lim[x→+∞] √(A^x+9)-√(A^x+4)
分子有理化
=lim[x→+∞] [√(A^x+9)-√(A^x+4)][√(A^x+9)+√(A^x+4)]/[√(A^x+9)+√(A^x+4)]
=lim[x→+∞] 5/[√(A^x+9)+√(A^x+4)]
=0
分子有理化
=lim[x→+∞] x(3x-√(9x²-6))(3x+√(9x²-6))/(3x+√(9x²-6))
=lim[x→+∞] 6x/(3x+√(9x²-6))
分子分母同除以x
=lim[x→+∞] 6/(3+√(9-6/x²))
=1
2、lim[x→+∞] √(A^x+9)-√(A^x+4)
分子有理化
=lim[x→+∞] [√(A^x+9)-√(A^x+4)][√(A^x+9)+√(A^x+4)]/[√(A^x+9)+√(A^x+4)]
=lim[x→+∞] 5/[√(A^x+9)+√(A^x+4)]
=0
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询