高数概率论。求大神指点红色箭头处的来由。f(x+z,x)是怎么来的??
1个回答
展开全部
1、先求∫e^x*cos2x dx
∫e^x*cos2x dx = (1/2)∫e^x d(sin2x)
= (1/2)(e^x)(sin2x) - (1/2)∫e^x*sin2x dx
= (1/2)(e^x)(sin2x) - (1/2)(-1/2)∫e^x d(cos2x)
= (1/2)(e^x)(sin2x) + (1/4)(e^x)(cos2x) - (1/4)∫e^x*cos2x dx,将最后那个积分移到左边得
(1+1/4)∫e^x*cos2x dx = (1/4)(e^x)(2sin2x+cos2x)
∫e^x*cos2x dx = (1/5)(e^x)(2sin2x+cos2x) + C
∫e^x*sin²x dx
= ∫e^x*(1/2)(1-cos2x) dx
= (1/2)∫e^x dx - (1/2)∫e^x*cos2x dx,代入上面的结果
= (1/2)(e^x) - (1/2)(1/5)(e^x)(2sin2x+cos2x) + C''
= (1/10)(e^x)(5-2sin2x-cos2x) + C''
∫e^x*cos2x dx = (1/2)∫e^x d(sin2x)
= (1/2)(e^x)(sin2x) - (1/2)∫e^x*sin2x dx
= (1/2)(e^x)(sin2x) - (1/2)(-1/2)∫e^x d(cos2x)
= (1/2)(e^x)(sin2x) + (1/4)(e^x)(cos2x) - (1/4)∫e^x*cos2x dx,将最后那个积分移到左边得
(1+1/4)∫e^x*cos2x dx = (1/4)(e^x)(2sin2x+cos2x)
∫e^x*cos2x dx = (1/5)(e^x)(2sin2x+cos2x) + C
∫e^x*sin²x dx
= ∫e^x*(1/2)(1-cos2x) dx
= (1/2)∫e^x dx - (1/2)∫e^x*cos2x dx,代入上面的结果
= (1/2)(e^x) - (1/2)(1/5)(e^x)(2sin2x+cos2x) + C''
= (1/10)(e^x)(5-2sin2x-cos2x) + C''
追问
狗逼
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询