limn趋近∞n(1÷(n²+π)+1÷(n²+2π)

 我来答
DoramiHe
2017-10-28 · 知道合伙人互联网行家
DoramiHe
知道合伙人互联网行家
采纳数:25332 获赞数:59543
2011年中山职业技术学院毕业,现担任毅衣公司京东小二

向TA提问 私信TA
展开全部
证明:limn【1/(n^2+π)+1/(n^2+2π)+...+1/(n^2+nπ)】<limn(1/n^2+1/n^2+...+1/n^2)
=limn*n/n^2=limn^2/n^2=1
又因为limn【1/(n^2+π)+1/(n^2+2π)+...+1/(n^2+nπ)】>limn【(1/n^2+nπ)+(1/n^2+nπ)+......(1/n^2+nπ)】
=limn(n/(n^2+nπ)
=limn/n+π)
=1
所以limn【1/(n^2+π)+1/(n^2+2π)+...+1/(n^2+nπ)】=1 成立。
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式