周期信号均可由正弦信号叠加而成,对吗
1个回答
2017-09-14
展开全部
哈哈,原来你也是宁夏人,那就给你讲讲吧!
一个周期信号,如果它满足所谓Dirichlet条件(一般现实生活中的物理信号都满足,因此不仔细说了,查所有的信号与系统的书都有讲解),它就可以表示为一个傅立叶级数的无穷项(或有限项)的和。关于为什么,应该仔细去看高数当中关于无穷级数的讲解,这里不多说了。
而所谓傅立叶级数者,就是各个频率的正弦信号。各个频率之间都是倍数关系,最小公倍数的那个频率就是所谓基频,也可以叫基波。
下面我就给你举个例子说明。
一个周期为T的矩形波,他有唯一的周期,自然就有唯一的频率,你这个理解当然没错。
但是研究信号频率的意义,是在于任何一个满足Dirichlet条件的信号可以由无穷项的、频率为基频倍数的正弦信号移位加权叠加而成,从而世界上的大量(不是任何)时域形态各异的信号,就可以统统用简单正弦信号的和表示,方便我们找到形色各异的时域信号的共同点,当然还有其他好处。
周期为T的矩形波,它的基频就是1/T,他可以由无穷个频率为n倍基频的正弦信号叠加逼近,这种逼近由于是无穷项求和,所以是精确的而不是近似的。
现在你的问题回答完了。多说几句,其实非周期信号也可以用正弦信号的移位加权叠加来精确表示,但是这个时候不存在所谓基频,频谱的概念也变为了频率密度谱,只是一般情况下我们还是叫他频谱。如果你是电子类的学生就要知道这其中的区别。
另外,一些信号分析中常常用到的信号,如冲激、阶跃信号都不满足Dirichlet条件,但他们还是有频谱。这就需要用到分配函数的理论去解释。清华大学郑君里教授写高教出版社出的信号与系统的第三章的最后一节——如果我没有记错的话,有对这个问题的介绍。
如果你能够明白完备正交基,正交分解,向量空间等概念,对于傅立叶变换这种基本的正交变换就会有更加深刻的理解。去看《线性代数与解析几何》的书吧!
信号分析中,对信号进行正交分解是最基本的方法,分解为正弦信号只是最基本的一种,还有很多正交基可选。那么问题来了:
1.为什么我们研究信号要进行正交变换呢?
2.为什么傅立叶变换这种最基础并且用途最广泛的正交变换要选择正弦信号呢?
^_^ 还有很多的问题呢,留给你自己去思考吧,小老乡!
全测科技
2024-12-19 广告
2024-12-19 广告
确实可以进行维修。如果您的频谱分析仪出现问题,并且还在保修期内,建议您联系原厂进行维修,这样可以享受到免费的维修服务。如果已经超过了保修期,也不用担心,市场上有许多专业的维修服务可以提供帮助。您可以在网络上搜索深圳全测科技有限公司,这是一家...
点击进入详情页
本回答由全测科技提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询