展开全部
这个是数学大纲解析的习题呢~解这一类的题,其实有个套路,就是先通过求极限将f(x)的表达式求出来就可以解啦~~步骤如下:
1、先求lim(1-x^2n/1+x^2n)x ,(n->∞):
f(x)= 0 , 当 x=0 或 x=±1
x , 当 0≤x<1 或 x<-1
-x , 当 -1<x≤0 或 x> 1 (共3种情况)
2、接着我们来找间断点:
通过上述的区间我们看出,“关键的点”有三个:0、1、-1;
(1)先看0:通过上面的区间可以看出,limf(0)=limf(x) (x->0+)=limf(x) (x->0-)
所以f(x)在(-1,1)都是连续的,0不是间断点;
(2)再看1:f(1)=0 , limf(x)(x->1-)=x=1 , limf(x)(x->1+)=-x=-1
f(1)≠limf(x)(x->1-)≠limf(x)(x->1+);所以x=1为第一类间断点;
(3)同理,-1:f(-1)=0 , limf(x)(x->-1-)=x=-1 , limf(x)(x->-1+)=-x=1
f(-1)≠limf(x)(x->-1-)≠limf(x)(x->-1+);所以x=-1为第一类间断点;
1、先求lim(1-x^2n/1+x^2n)x ,(n->∞):
f(x)= 0 , 当 x=0 或 x=±1
x , 当 0≤x<1 或 x<-1
-x , 当 -1<x≤0 或 x> 1 (共3种情况)
2、接着我们来找间断点:
通过上述的区间我们看出,“关键的点”有三个:0、1、-1;
(1)先看0:通过上面的区间可以看出,limf(0)=limf(x) (x->0+)=limf(x) (x->0-)
所以f(x)在(-1,1)都是连续的,0不是间断点;
(2)再看1:f(1)=0 , limf(x)(x->1-)=x=1 , limf(x)(x->1+)=-x=-1
f(1)≠limf(x)(x->1-)≠limf(x)(x->1+);所以x=1为第一类间断点;
(3)同理,-1:f(-1)=0 , limf(x)(x->-1-)=x=-1 , limf(x)(x->-1+)=-x=1
f(-1)≠limf(x)(x->-1-)≠limf(x)(x->-1+);所以x=-1为第一类间断点;
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询