如何理解常微分方程解的延拓问题
1个回答
展开全部
延拓在数学上的意思就是扩大函数的定义域。常微分方程的解就是函数,所以称为解的延拓。
为什么要做解的延拓呢?常微分方程的解,不止有解函数,也包含解函数的定义域,即“解的存在区间”。解的延拓,就是求解“解的最大存在区间”的基础。当然了,能求出解的解析式的话,直接由解析式求出存在区间就好了,但对于那些难以求出甚至根本就无法求出解的解析式的常微分方程,解的存在性+解的延拓就是一种很好的求解手段了。
为什么要做解的延拓呢?常微分方程的解,不止有解函数,也包含解函数的定义域,即“解的存在区间”。解的延拓,就是求解“解的最大存在区间”的基础。当然了,能求出解的解析式的话,直接由解析式求出存在区间就好了,但对于那些难以求出甚至根本就无法求出解的解析式的常微分方程,解的存在性+解的延拓就是一种很好的求解手段了。
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
Sievers分析仪
2025-01-06 广告
2025-01-06 广告
是的。传统上,对于符合要求的内毒素检测,最终用户必须从标准内毒素库存瓶中构建至少一式两份三点标准曲线;必须有重复的阴性控制;每个样品和PPC必须一式两份。有了Sievers Eclipse内毒素检测仪,这些步骤可以通过使用预嵌入的内毒素标准...
点击进入详情页
本回答由Sievers分析仪提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询