1个回答
展开全部
: P(X=k) = {(e^(-λ))(λ^k)}/k!, E(X) =λ, D(X) =λ. P(X=1) = {(e^(-λ))(λ^1)}/1! = e^(-λ)λ P(X=2) = {(e^(-λ))(λ^2)}/2! = e^(-λ)(λ^2)/2 P(X=1)=2P(X=2) --> e^(-λ)λ=2e^(-λ)(λ^2)/2 -->ɨ
追问
都看不懂
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
上海华然企业咨询
2024-10-28 广告
2024-10-28 广告
作为上海华然企业咨询有限公司的一员,我们深知大模型测试对于企业数字化转型与智能决策的重要性。在应对此类测试时,我们注重数据的精准性、算法的先进性及模型的适用性,确保大模型能够精准捕捉市场动态,高效分析企业数据,为管理层提供科学、前瞻的决策支...
点击进入详情页
本回答由上海华然企业咨询提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询