展开全部
z1=cosα+isinα, z2=cosβ+isinβ
|z1-z2|=1
solution :
(I)
|z1-z2|^2 =1
(cosα-cosβ)^2+(sinα-sinβ)^2 =1
2-2cosα.cosβ-2sinα.sinβ =1
2-2cos(α-β) = 1
cos(α-β) = 1/2
(II)
-π/2<β<0<α<π/2
sinβ = -3/5 =>cosβ = 4/5
/
cos(α-β) = 1/2
cosα.cosβ+sinα.sinβ=1/2
(4/5)cosα-(3/5)sinα=1/2
2(4cosα -3sinα) = 5
6sinα +5 =8cosα
(6sinα +5)^2 =(8cosα)^2
28(sinα)^2 -60sinα -89=0
sinα =(60-16√53)/56 = (15-4√53)/14
|z1-z2|=1
solution :
(I)
|z1-z2|^2 =1
(cosα-cosβ)^2+(sinα-sinβ)^2 =1
2-2cosα.cosβ-2sinα.sinβ =1
2-2cos(α-β) = 1
cos(α-β) = 1/2
(II)
-π/2<β<0<α<π/2
sinβ = -3/5 =>cosβ = 4/5
/
cos(α-β) = 1/2
cosα.cosβ+sinα.sinβ=1/2
(4/5)cosα-(3/5)sinα=1/2
2(4cosα -3sinα) = 5
6sinα +5 =8cosα
(6sinα +5)^2 =(8cosα)^2
28(sinα)^2 -60sinα -89=0
sinα =(60-16√53)/56 = (15-4√53)/14
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询