
fortran如何调用C++写成的库函数
展开全部
program main
!*****************************************************************************80
!
!! MAIN is the main program for KRONROD_PRB.
!
! Licensing:
!
! This code is distributed under the GNU LGPL license.
!
! Modified:
!
! 01 September 2011
!
! Author:
!
! John Burkardt
!
use, intrinsic :: iso_c_binding! Fortran 2003 语言新加的模块。
implicit none
!
! TIMESTAMP is provided by the C++ library, and so the following
! INTERFACE block must set up the interface.
!
interface
subroutine timestamp ( ) bind ( c )
use iso_c_binding
end subroutine timestamp
end interface
call timestamp ( )
write ( *, '(a)' ) ' '
write ( *, '(a)' ) 'KRONROD_PRB:'
write ( *, '(a)' ) ' FORTRAN90 version'
write ( *, '(a)' ) ' FORTRAN90 test program calls C++ functions.'
call test01 ( )
call test02 ( )
!
! Terminate.
!
write ( *, '(a)' ) ' '
write ( *, '(a)' ) 'KRONROD_PRB:'
write ( *, '(a)' ) ' Normal end of execution.'
write ( *, '(a)' ) ' '
call timestamp ( )
stop
end
subroutine test01 ( )
!*****************************************************************************80
!
!! TEST01 tests the code for the odd case N = 3.
!
! Licensing:
!
! This code is distributed under the GNU LGPL license.
!
! Modified:
!
! 29 November 2010
!
! Author:
!
! John Burkardt
!
use, intrinsic :: iso_c_binding
implicit none
!
! KRONROD is provided by the C++ library, and so the following
! INTERFACE block must be set up to describe how data is to
! be passed.
!
interface
subroutine kronrod ( n, eps, x, w1, w2 ) bind ( c )
use iso_c_binding
integer ( c_int ), VALUE :: n
real ( c_double ), VALUE :: eps
real ( c_double ) :: x(*)
real ( c_double ) :: w1(*)
real ( c_double ) :: w2(*)
end subroutine kronrod
end interface
integer ( c_int ), parameter :: n = 3
real ( c_double ) eps
integer ( c_int ) i
integer ( c_int ) i2
real ( c_double ) s
real ( c_double ) w1(n+1)
real ( c_double ) w2(n+1)
real ( c_double ) :: wg(n) = (/ &
0.555555555555555555556D+00, &
0.888888888888888888889D+00, &
0.555555555555555555556D+00 /)
real ( c_double ) :: wk(2*n+1) = (/ &
0.104656226026467265194D+00, &
0.268488089868333440729D+00, &
0.401397414775962222905D+00, &
0.450916538658474142345D+00, &
0.401397414775962222905D+00, &
0.268488089868333440729D+00, &
0.104656226026467265194D+00 /)
real ( c_double ) x(n+1)
real ( c_double ) :: xg(n) = (/ &
-0.77459666924148337704D+00, &
0.0D+00, &
0.77459666924148337704D+00 /)
real ( c_double ) :: xk(2*n+1) = (/ &
-0.96049126870802028342D+00, &
-0.77459666924148337704D+00, &
-0.43424374934680255800D+00, &
0.0D+00, &
0.43424374934680255800D+00, &
0.77459666924148337704D+00, &
0.96049126870802028342D+00 /)
write ( *, '(a)' ) ' '
write ( *, '(a)' ) 'TEST01'
write ( *, '(a)' ) ' Request KRONROD to compute the Gauss rule'
write ( *, '(a)' ) ' of order 3, and the Kronrod extension of'
write ( *, '(a)' ) ' order 3+4=7.'
write ( *, '(a)' ) ' '
write ( *, '(a)' ) ' Compare to exact data.'
eps = 0.000001D+00
call kronrod ( n, eps, x, w1, w2 )
write ( *, '(a)' ) ' '
write ( *, '(a,i2)' ) ' KRONROD returns 3 vectors of length ', n + 1
write ( *, '(a)' ) ' '
write ( *, '(a)' ) ' I X WK WG'
write ( *, '(a)' ) ' '
do i = 1, n + 1
write ( *, '(2x,i4,2x,g14.6,2x,g14.6,2x,g14.6)' ) i, x(i), w1(i), w2(i)
end do
write ( *, '(a)' ) ' '
write ( *, '(a)' ) ' Gauss Abscissas'
write ( *, '(a)' ) ' Exact Computed'
write ( *, '(a)' ) ' '
do i = 1, n
if ( 2 * i <= n + 1 ) then
i2 = 2 * i
s = -1.0D+00
else
i2 = 2 * ( n + 1 ) - 2 * i
s = +1.0D+00
end if
write ( *, '(2x,i4,2x,g14.6,2x,g14.6)' ) i, xg(i), s * x(i2)
end do
write ( *, '(a)' ) ' '
write ( *, '(a)' ) ' Gauss Weights'
write ( *, '(a)' ) ' Exact Computed'
write ( *, '(a)' ) ' '
do i = 1, n
if ( 2 * i <= n + 1 ) then
i2 = 2 * i
else
i2 = 2 * ( n + 1 ) - 2 * i
end if
write ( *, '(2x,i4,2x,g14.6,2x,g14.6)' ) i, wg(i), w2(i2)
end do
write ( *, '(a)' ) ' '
write ( *, '(a)' ) ' Gauss Kronrod Abscissas'
write ( *, '(a)' ) ' Exact Computed'
write ( *, '(a)' ) ' '
do i = 1, 2 * n + 1
if ( i <= n + 1 ) then
i2 = i
s = -1.0D+00
else
i2 = 2 * ( n + 1 ) - i
s = +1.0D+00
end if
write ( *, '(2x,i4,2x,g14.6,2x,g14.6)' ) i, xk(i), s * x(i2)
end do
write ( *, '(a)' ) ' '
write ( *, '(a)' ) ' Gauss Kronrod Weights'
write ( *, '(a)' ) ' Exact Computed'
write ( *, '(a)' ) ' '
do i = 1, 2 * n + 1
if ( i <= n + 1 ) then
i2 = i
else
i2 = 2 * ( n + 1 ) - i
end if
write ( *, '(2x,i4,2x,g14.6,2x,g14.6)' ) i, wk(i), w1(i2)
end do
return
end
subroutine test02 ( )
!*****************************************************************************80
!
!! TEST02 tests the code for the even case N = 4.
!
! Licensing:
!
! This code is distributed under the GNU LGPL license.
!
! Modified:
!
! 29 November 2010
!
! Author:
!
! John Burkardt
!
use, intrinsic :: iso_c_binding
implicit none
!
! KRONROD is provided by the C++ library, and so the following
! INTERFACE block must be set up to describe how data is to
! be passed.
!
interface
subroutine kronrod ( n, eps, x, w1, w2 ) bind ( c )
use iso_c_binding
integer ( c_int ), VALUE :: n
real ( c_double ), VALUE :: eps
real ( c_double ) :: x(*)
real ( c_double ) :: w1(*)
real ( c_double ) :: w2(*)
end subroutine kronrod
end interface
integer ( c_int ), parameter :: n = 4
real ( c_double ) eps
integer ( c_int ) i
integer ( c_int ) i2
real ( c_double ) s
real ( c_double ) w1(n+1)
real ( c_double ) w2(n+1)
real ( c_double ) x(n+1)
write ( *, '(a)' ) ' '
write ( *, '(a)' ) 'TEST02'
write ( *, '(a)' ) ' Request KRONROD to compute the Gauss rule'
write ( *, '(a)' ) ' of order 4, and the Kronrod extension of'
write ( *, '(a)' ) ' order 4+5=9.'
eps = 0.000001D+00
call kronrod ( n, eps, x, w1, w2 )
write ( *, '(a)' ) ' '
write ( *, '(a,i2)' ) ' KRONROD returns 3 vectors of length ', n + 1
write ( *, '(a)' ) ' '
write ( *, '(a)' ) ' I X WK WG'
write ( *, '(a)' ) ' '
do i = 1, n + 1
write ( *, '(2x,i4,2x,g14.6,2x,g14.6,2x,g14.6)' ) i, x(i), w1(i), w2(i)
end do
return
end
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询