求详细过程
在具有长轴2a和短轴2b的椭圆中,长轴上的顶点具有任何点的最小曲率半径,该处的曲率(曲率半径的倒数)最大=a/b²
x²/4+y²/9=1→最大曲率=3/2²=¾
计算过程:
x²/b²+y²/a²=1
两边对x求导(隐函数求导):
2x/b²+2y·y'/a²=0
y'=-(a²/b²)x/y
y''=-(a²/b²)(y-xy')/y²
=-(a²/b²)(y+x(a²/b²)x/y)/y²
=-(a²/b²)(y²+x(a²/b²)x)/y³
=-a²(b²y²+a²x²)/(b⁴y³)
=-a²·a²b²/(b⁴y³)
=-a⁴/(b²y³)
曲率K=|y''|/(1+y'²)^(3/2)
=[a⁴/(b²y³)]/[(1+(a⁴/b⁴)x²/y²]^(3/2)
=a⁴/[(b²y³)]·[(y²+(a⁴/b⁴)x²]^(3/2)/y³
=a⁴/b²·[y²+(a⁴/b⁴)x²]^(3/2)
=a⁴/(b²·[b⁴y²+a⁴x²]^(3/2)/(b⁴)^(3/2)
=a⁴/(b²·[b⁴y²+a⁴x²]^(3/2)/b⁶
=a⁴b⁴/[b⁴y²+a⁴x²]^(3/2)
=a⁴b⁴/[b⁴(a²b²-a²x²)/b²+a⁴x²]^(3/2)
=a⁴b⁴/[a²b⁴-a²b²x²+a⁴x²]^(3/2)
=ab⁴/[b⁴+(a²-b²)x²]^(3/2)
显然x=0时,取得最大值=ab⁴/b⁶=a/b²