展开全部
∫x(arctanx)^2 dx
=(1/2)∫(arctanx)^2 dx^2
=(1/2)x^2.(arctanx)^2 -∫x^2.(arctanx)/(1+x^2) dx
=(1/2)x^2.(arctanx)^2 -∫ [ 1- 1/(1+x^2)] .(arctanx) dx
=(1/2)x^2.(arctanx)^2 +(1/2)(arctanx)^2 -∫ arctanx dx
=(1/2)x^2.(arctanx)^2 +(1/2)(arctanx)^2 -xarctanx +∫ x/(1+x^2) dx
=(1/2)x^2.(arctanx)^2 +(1/2)(arctanx)^2 -xarctanx +(1/2)ln|1+x^2| +C
=(1/2)∫(arctanx)^2 dx^2
=(1/2)x^2.(arctanx)^2 -∫x^2.(arctanx)/(1+x^2) dx
=(1/2)x^2.(arctanx)^2 -∫ [ 1- 1/(1+x^2)] .(arctanx) dx
=(1/2)x^2.(arctanx)^2 +(1/2)(arctanx)^2 -∫ arctanx dx
=(1/2)x^2.(arctanx)^2 +(1/2)(arctanx)^2 -xarctanx +∫ x/(1+x^2) dx
=(1/2)x^2.(arctanx)^2 +(1/2)(arctanx)^2 -xarctanx +(1/2)ln|1+x^2| +C
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询