4个回答
展开全部
分享一种解法。设t=y²。∵y是x的函数,∴t亦是x的函数。∴√(1-t)=(3/2)x²t'。
经整理,有dt/√(1-t)=(2/3)dx/x²。两边积分,有-2√(1-t)=(-2/3)/x+c。
∴√(1-t)=C+1/(3x)。∴y²=1-[C+1/(3x)]²,其中C为常数。
供参考。
经整理,有dt/√(1-t)=(2/3)dx/x²。两边积分,有-2√(1-t)=(-2/3)/x+c。
∴√(1-t)=C+1/(3x)。∴y²=1-[C+1/(3x)]²,其中C为常数。
供参考。
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
整理公式,得到:
1/(3x²) = y/√(1-y²) * dy/dx
dx/(3x²) = ydy/√(1-y²)
dx/(3x²) = 1/2 * d(y²)/√(1-y²)
1/2 * dx/x² = (-1/2) * d(1-y²)/√(1-y²)
方程两边同时积分,可以得到:
1/2 * ∫x^(-2) dx = (-1/2) * ∫d(1-y²)/√(1-y²)
- (1/x) - C = - 2 * √(1-y²)
2√(1-y²) = 1/x + C
1/(3x²) = y/√(1-y²) * dy/dx
dx/(3x²) = ydy/√(1-y²)
dx/(3x²) = 1/2 * d(y²)/√(1-y²)
1/2 * dx/x² = (-1/2) * d(1-y²)/√(1-y²)
方程两边同时积分,可以得到:
1/2 * ∫x^(-2) dx = (-1/2) * ∫d(1-y²)/√(1-y²)
- (1/x) - C = - 2 * √(1-y²)
2√(1-y²) = 1/x + C
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询