初中数学三角形相似题
展开全部
这题根据“三角形两边之和大于第三边,两边之差小于第三边”来做
首先假定一条边27,由于是相似三角形,所以三角形的三边应该成比例并相对应。如果27是对应24的边,那么另外的两条边就分别要对应30与36的边,那么,那两条边就应该是27/24*36=40.5与27/24*30=33.75,由于40.5+33.75大于45,所以这种方法不可行。若27对应是的30的边,那么另外的两条边就应该分别是27/30*24=21.6与27/30*36=32.4,由于21.6+32.4大于45,所以这种方法也不可行,若27对应的是36的边,那么另外两边就应该是27/36*24=18与27/36*30=22.5,由于18+22.5小于45所以,这种方法可行。
假定一条边是45,另外两边加起来最长也就是27,不符合三角形两边之和大于第三边,所以这个方法不可行。
所以,只有一种可行方法
首先假定一条边27,由于是相似三角形,所以三角形的三边应该成比例并相对应。如果27是对应24的边,那么另外的两条边就分别要对应30与36的边,那么,那两条边就应该是27/24*36=40.5与27/24*30=33.75,由于40.5+33.75大于45,所以这种方法不可行。若27对应是的30的边,那么另外的两条边就应该分别是27/30*24=21.6与27/30*36=32.4,由于21.6+32.4大于45,所以这种方法也不可行,若27对应的是36的边,那么另外两边就应该是27/36*24=18与27/36*30=22.5,由于18+22.5小于45所以,这种方法可行。
假定一条边是45,另外两边加起来最长也就是27,不符合三角形两边之和大于第三边,所以这个方法不可行。
所以,只有一种可行方法
展开全部
(1)∵∠FEC=90°,
∴∠AEF
∠DEC=90°
∵∠AFE
∠AEF=90°,
∴∠DEC=∠AFE
∵∠FAE=∠EDC=90°,
∴∠DCE=∠AEF
∴△AEF∽△DCE
∴EF/EC=AF/ED
∵E为AD中点,∴AE=ED,
∴EF/EC=AF/AE
∴AF/EF=AE/EC
∵∠FAE=∠FEC=90°∴△AEF∽△EFC
(2)延长FE,CD相交于点G,
则△CFE≌△CGE,△GDE≌△FAE,△GDE∽△CDE,
∴△AFE∽△EFC,
设AE=x,
∠AEF=α,∠FCB=β。
若α=β=30°,
则,∴AB=CD=√3x,
∴k=√3/2
若α=∠BCF,则∠AFE=β,
∴∠BFC=∠AFE=-90°〈0
∴无解
综合上述得k=√3/2
∴∠AEF
∠DEC=90°
∵∠AFE
∠AEF=90°,
∴∠DEC=∠AFE
∵∠FAE=∠EDC=90°,
∴∠DCE=∠AEF
∴△AEF∽△DCE
∴EF/EC=AF/ED
∵E为AD中点,∴AE=ED,
∴EF/EC=AF/AE
∴AF/EF=AE/EC
∵∠FAE=∠FEC=90°∴△AEF∽△EFC
(2)延长FE,CD相交于点G,
则△CFE≌△CGE,△GDE≌△FAE,△GDE∽△CDE,
∴△AFE∽△EFC,
设AE=x,
∠AEF=α,∠FCB=β。
若α=β=30°,
则,∴AB=CD=√3x,
∴k=√3/2
若α=∠BCF,则∠AFE=β,
∴∠BFC=∠AFE=-90°〈0
∴无解
综合上述得k=√3/2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询